The present application claims priority to and incorporates by reference the entire contents of Japanese Patent Application No. 2011-038691 filed in Japan on Feb. 24, 2011.
1. Field of the Invention
The present invention relates to a sheet processing apparatus that performs a sheet folding process and an image forming system including the same.
2. Description of the Related Art
Conventionally, sheet processing apparatuses, which perform various post processing on a sheet on which an image is formed, have been proposed as auxiliary apparatuses of image forming apparatuses. Here, the “post processing” refers to various kinds of processing such as sorting sheets into a given number of copies, binding sheets using staples, folding sheets in a half-fold form, a tri-fold form (a z-fold form), or in other forms, and punching holes for filing. Of these sheet processing apparatuses, as a sheet processing apparatus (a sheet folding apparatus) that performs a sheet folding process, there has been known an apparatus that bends a sheet by brining the sheet into contact with a stopper and causing folding rollers to nip the bended sheet to form a folding line in a sheet (that is, performs a folding process on a sheet). In the folding system that forms the folding line on the sheet in a manner of nipping the sheet with the folding rollers, it is very important and strongly requested by users that a direction of the folding line is parallel to the front edge of the sheet, that is, that the folding line does not deviate to be oblique to the front edge of the sheet. In the following description, a state in which the folding line deviates to be oblique to the edge of the front edge of the sheet is referred to as “oblique deviation” of the folding line. For example, it is likely that the oblique folding line of the sheet is generated when the size of a sheet as a processing target changes or when a folding type or a folding mode of a sheet changes.
Japanese Patent No. 4238193 discloses a sheet folding apparatus capable of correcting oblique deviation of a sheet. The sheet folding apparatus includes a folding plate that is arranged to move forward or backward in a direction substantially perpendicular to a sheet conveying path, and an angle changing unit that changes a relative angle between an arbitrary edge of a sheet and a folding line and that is arranged on a tail edge fence on which a front edge of a sheet linearly conveyed along the conveying path abuts.
Further, Japanese Patent No. 4425101 discloses a sheet processing apparatus including a configuration that a pair of conveying rollers rotatable clockwise and counterclockwise is disposed downstream of a first folding roller in the sheet conveying direction; the pair of conveying rollers is stopped at a predetermined timing in order to nip a predetermined position of a sheet therebetween, and thereby to determine the sheet folding position. The apparatus further includes a configuration that an abut stopper is disposed upstream of a second folding roller; a front edge of the sheet is abut on the abut stopper so that a tail edge of the sheet is guided to the second folding roll, and thereby the sheet folding position can be determined.
In recent years, there have been market needs for compact and small products, including a need for slim product. In order to respond to the needs, it is required to reduce a space, in which a sheet folding process is performed, in a sheet processing apparatus.
However, in the conventional sheet processing apparatuses disclosed in Japanese Patent No. 4238193 and Japanese Patent No. 4425101, there is a problem in that it is difficult to correct the oblique deviation of the folding line of the sheet while reducing a space in an apparatus.
In addition, in the sheet processing apparatus that performs the sheet folding process, there is a case in which the position of the folding line relative to the front edge of the sheet is required to be changed. The oblique deviation of the folding line needs to be corrected even when the position of the folding line of the sheet is changed.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
A sheet processing apparatus capable of folding a sheet along a folding line is provides with a conveying path forming member that forms a sheet conveying path having a curved portion through which a front edge of the sheet passes at a downstream side at least of a sheet conveying direction, a sheet conveying unit that conveys the sheet along the sheet conveying path, a sheet folding unit that folds the sheet along the folding line in the sheet conveying path, and then conveys the sheet toward a discharge direction with the folding line discharged first as a front edge, and a sheet position defining unit that defines a position of the front edge of the sheet at the downstream side of the sheet conveying direction in the curved portion of the sheet conveying path so that a target position of the folding line on the sheet coincides with a folding position of the sheet folding unit. The sheet position defining unit is configured to be capable of adjusting an inclination of the front edge of the sheet in the curved portion of the sheet conveying path.
An image forming system includes an image forming apparatus that forms an image on a sheet, and a sheet processing apparatus capable of folding the sheet along a folding line. The sheet processing apparatus is provided with a conveying path forming member that forms a sheet conveying path having a curved portion through which a front edge of the sheet passes at a downstream side at least of a sheet conveying direction, a sheet conveying unit that conveys the sheet along the sheet conveying path, a sheet folding unit that folds the sheet along the folding line in the sheet conveying path, and then conveys the sheet toward a discharge direction with the folding line discharged first as a front edge, and a sheet position defining unit that defines a position of the front edge of the sheet at the downstream side of the sheet conveying direction in the curved portion of the sheet conveying path so that a target position of the folding line on the sheet coincides with a folding position of the sheet folding unit. The sheet position defining unit is configured to be capable of adjusting an inclination of the front edge of the sheet in the curved portion of the sheet conveying path.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Hereinafter, exemplary embodiments of the invention will be described with reference to the accompanying drawings.
Referring to
The sheet folding apparatus 100 further includes the rotatable sheet position defining member 6 on which a front edge of a sheet abuts, a driving unit (not illustrated) that drives the sheet position defining member 6 to adjust a rotational position of the sheet position defining member 6, a front edge detecting unit 7 that detects a front edge of the sheet, a bending auxiliary member 8 that guides a folding position of a sheet to a nip between the pair of folding rollers 2 on the basis of a signal from the front edge detecting unit 7, and a bending auxiliary member driving unit (not illustrated) that drives the bending auxiliary member 8.
Furthermore, the sheet folding apparatus 100 is configured to include a third conveying path forming member 4 that forms a processed sheet conveying path 40 through which the sheet folded by the pair of folding rollers 2 is conveyed, and a control unit (not illustrated) functioning as a control means that controls the respective driving units on the basis of a signal from the front edge detecting unit 7.
In the sheet folding apparatus 100 of
As the sheet folding unit for folding a sheet along a folding line in the sheet conveying paths 30 and 50, and then conveying the folded sheet toward a discharge direction with the folding line discharged first as a front edge, there are provided with the pair of folding rollers 2, the third conveying path forming member 4 that forms the processed sheet conveying path 40, the bending auxiliary member 8, and a bending member driving unit which will be described later.
A sheet position defining unit, which defines a position of the front edge of the sheet at the downstream side of the sheet conveying direction in the curved portion (the curved conveying path 50) of the sheet conveying path so that a target line on the sheets to be folded locates accurately at a folding position of the folding unit, is provided with the sheet position defining member 6 and a driving unit of the sheet position defining member 6. The sheet position defining member 6 is provided with a folding position defining shaft 60 which is a driving shaft driven by a driving unit such as a motor, and a rotatable abutting member 61 attached to the folding position defining shaft 60. The folding position defining shaft 60 functions as a shaft that rotates the abutting member 61 to thereby change the abutting position with the front edge of the sheet in the curved conveying path 50 which is the curved portion of the sheet conveying path. The front edge of the sheet conveyed through the curved conveying path 50 abuts on a predetermined sheet abutting surface of the abutting member 61. The sheet position defining member 6 is also called a stopper, since it stops an advance of the sheet by abutting on the front edge of the sheet.
Next, a description will be made in connection with a more concrete configuration example and a basic operation of the sheet folding apparatus 100 having the above configuration.
A sheet as a processing target is conveyed by means of the pair of folding rollers 2 including a driving roller and a following roller, and the carriage roller 1 adjacent to the driving roller of the pair rollers 2. As the driving source of the folding rollers 2, a rotational driving motor such as DC motor or stepping motor may be used. As the front edge detecting unit 7 for detecting a fact that the front edge of the sheet pass through a predetermined position of the curved conveying path 50, a transmissive sensor, a reflective sensor and the like may be used. After passed through the predetermined detecting position of the detecting unit 7, the sheet abuts on the sheet position defining member 6 which serves as the folding position defining unit and block the curved conveying path 50. The sheet starts to be bent in the vicinity of and before folding rollers 2 by an operation that the carriage roller 1 keeps conveying the sheet by rotating toward a direction indicated by an arrow in
The bent portion of the sheet is pressed by the bending auxiliary member 8 at a predetermined timing triggered by the signal detected by the front edge detecting unit 7. The bending auxiliary member 8 rotates counterclockwise so as to press the sheet between the nip defined by the folding rollers 2. As the driving source for the bending auxiliary member 8, a solenoid or a stepping motor may be used, for example. After the sheet is pressed between the nip defined by the folding rollers 2, the bending auxiliary member 8 rotates clockwise to return to the original position.
The rotation of the sheet position defining member 6 is controlled so as to define or determine the abutting position with the sheet depending on the sheet size or the folding type (the folding mode). A stepping motor that can be controlled only by a pulse (so-called “open-loop controlled”) without using a position sensor is preferably used as a driving source of the rotation of the sheet position defining member 6. The front edge detecting unit 7 is disposed or arranged outside a rotation range of the sheet position defining member 6, since it is difficult to dispose the detecting unit 7 in accordance with the position of the front edge stopper which varies depending on the sheet size and/or the folding type (folding mode). Abutting timing of the sheet position defining member 6 can be calculated from a conveying distance of a sheet between the front edge detecting unit 7 and the sheet position defining member 6 and a linear velocity of the sheet (the sheet conveying velocity). The folded sheet that has passed through the pair of folding rollers 2 is fed to the processed sheet conveying path 40 located downstream in the sheet conveying path, by the pair of folding rollers 2.
As illustrated in
In this regard, in the present embodiment, the sheet position defining member 6 functioning as the sheet position defining unit is configured to be able to adjust an inclination of the front edge of the sheet in the curved conveying path 50 so that the oblique deviation of the folding line can be corrected even when the position of the folding line of the sheet changes depending on the sheet size or the folding type.
As illustrated in
Further, as illustrated in
In
The control unit 101 is connected to a folding roller driving unit 102, a folding position defining shaft driving unit 103, a bending auxiliary member driving unit 104, and a folding deviation correcting shaft driving unit 105, and can control the respective driving units. For example, the control unit 101 can control the folding roller driving unit 102 and drive the pair of folding rollers 2 for folding the sheet and the carriage roller 1 that is drivenly rotated by the pair of folding rollers 2 to convey the sheet at predetermined timing. The control unit 101 can control the folding position defining shaft driving unit 103 and adjust the rotational position (the rotational angle) of the folding position defining shaft 60 of the sheet position defining member 6 that abuts on the front edge of the sheet and decides the folding position. Further, the control unit 101 can control the bending auxiliary member driving unit 104 based on a detecting signal of the front edge detecting unit 7 and drive the bending auxiliary member 8 that guides the folding position of the sheet to the nip between the pair of folding rollers 2 at predetermined timing. Furthermore, the control unit 101 can control the folding deviation correcting shaft driving unit 105 based on a measurement signal of the folding length measuring unit 9 and adjust the rotational position (rotational angle) of the folding deviation correcting shaft 62 of the sheet position defining member 6.
Next, a description will be made in connection with an example of a basic operation of the sheet folding apparatus 100 having the configuration illustrated in
A sheet of a processing target is conveyed along the sheet conveying path 30 at the input side and the curved conveying path 50 at the sheet front edge side by the pair of folding rollers 2 functioning as a driving side roller and a driven side roller and the carriage roller 1 (driven) that is adjacent to the folding roller at the driving side. After passing through the detected position of the front edge detecting unit 7 in the curved conveying path 50, the sheet abuts on the sheet position defining member 6 that blocks the curved conveying path 50. Even after the sheet abuts on the sheet position defining member 6, the carriage roller 1 rotates in a direction of an arrow illustrated in
Here, when oblique deviation in a folding position illustrated in
tan θ=(L2−L1)/L3 (1)
Meanwhile, when oblique deviation in a folding position illustrated in
First, in step S1, sheet information (sheet size) and folding type (folding mode) information (single folding, triple folding, or the like) are acquired from the main body of the imaging forming apparatus 600. The folding position of the sheet is decided based on the sheet information (sheet size) and the folding mode information. In step S2, the folding position defining shaft driving unit 103 is controlled such that the folding position defining shaft 60 of the sheet position defining member 6 is rotated up to a predetermined rotational position. Thereafter, in step S3, a sheet reception permission signal is transmitted to the main body of the imaging forming apparatus 600.
When the sheet is conveyed and then a signal representing that the front edge of the sheet has been detected by the front edge detecting unit 7 is received in step S4, in step S5, the bending auxiliary member driving unit 104 is controlled using the front edge detecting signal as a trigger such that the bending auxiliary member 8 is rotated at optimum timing. The bending auxiliary member 8 is pressed to guide the sheet into the nip between the pair of folding rollers 2, and so the sheet is conveyed to the downstream side of the pair of folding rollers 2 in the conveying direction. After the sheet has passed through the pair of folding rollers 2, in step S6, the folding length measuring units 9 arranged on the processed sheet conveying path 40 are turned on when the sheet front edge (the position of the folding line) is detected.
In step S7, the control unit 101 performs a folding length calculation process using the front edge detecting signal of the folding length measuring unit 9 generated by measuring the folded sheet as a trigger. For example, the calculation process is performed to calculate a folding length L [mm] using the following Formula (2) based on a measurement result of a time T [sec] from when the front edge of the folded sheet is detected to when the tail edge of the folded sheet is detected and linear velocity V [mm/sec].
L=T×V (2)
The folding length measuring units 9 are arranged at both end portions of the processed sheet conveying path 40, through which the sheet passes, in the width direction, as illustrated in
However, when the difference between the calculation values of the folding lengths L1 and L2 is larger than the specific value Ls0 (No in step S8) and the folding length L1 is larger than the folding length L2 (Yes in step S9), in step S10, an adjustment quantity is calculated as illustrated in
Thereafter, reception of the next sheet is permitted, and the processes of step S4 and steps subsequent thereto are re-executed. In this control example, it is determined whether or not the difference between the folding lengths L1 and L2 is a specific value or less (step S8 in the flowchart). However, control may be performed such that it is determined whether or not each of the folding lengths L1 and L2 is a specific value or less.
The control system of
First, in step S1, sheet information (sheet size) and folding mode information (single folding, triple folding, or the like) are acquired from the main body of the imaging forming apparatus 600, and folding deviation correction quantity information at that time is acquired from the recording unit 106 based on the sheet information and the folding mode information. The folding position is decided based on the sheet information (sheet size) and the folding mode information, and the folding deviation quantity is decided based on the folding deviation correction quantity information. In step S2, the folding position defining shaft 60 and the folding deviation correcting shaft 62 of the sheet position defining member 6 are operated based on the folding position information and the folding deviation quantity information. Thereafter, in step S3, a sheet reception permission signal is transmitted to the main body of the imaging forming apparatus 600.
When the sheet is conveyed and then a signal representing that the front edge of the sheet has been detected by the front edge detecting unit 7 is received in step S4, in step S5, the bending auxiliary member driving unit 104 is controlled using the front edge detecting signal as a trigger such that the bending auxiliary member 8 is rotated at optimum timing. The bending auxiliary member 8 is pressed to guide the sheet into the nip between the pair of folding rollers 2, and so the sheet is conveyed to the downstream side of the pair of folding rollers 2 in the conveying direction. After the sheet has passed through the pair of folding rollers 2, in step S7, the folding length measuring unit 9 arranged on the processed sheet conveying path 40 is turned on when the sheet front edge is detected. However, when it is determined in step S6 that a function of the folding length measuring unit 9 is previously set to OFF through the operating unit 602, the process is finished without measuring the folding length.
In step S8, the control unit 101 performs a folding length calculation process using the front edge detecting signal of the folding length measuring unit 9 generated by measuring the folded sheet as a trigger. For example, similarly to the above described example, the calculation process is performed to calculate a folding length L [mm] using the following Formula (2) based on a measurement result of a time T [sec] from when the front edge of the folded sheet is detected to when the tail edge of the folded sheet is detected and linear velocity V [mm/sec].
L=T×V (2)
The folding length measuring units 9 are arranged at both end portions of the processed sheet conveying path 40, through which the sheet passes, in the width direction, as illustrated in
However, when the difference between the calculation values of the folding lengths L1 and L2 is larger than the specific value Ls0 (No in step S9) and the folding length L1 is larger than the folding length L2 (Yes in step S10), in step S11, an adjustment quantity is calculated as illustrated in
Thereafter, in step S15, information (folding position decision information and folding deviation correction information) at that time is recorded in the recording unit 106. Then, reception of the next sheet is permitted, and the processes of step S4 and steps subsequent thereto are re-executed. In this control example, it is determined whether or not the difference between the folding lengths L1 and L2 is a specific value or less (step S10 in the flowchart). However, control may be performed such that it is determined whether or not each of the folding lengths L1 and L2 is a specific value or less.
As illustrated in
In the control system of
Referring to the flowchart of
According to the present embodiment, the sheet conveying path 50 is formed by the conveying path forming member 5 such that a portion through which at least the front edge of the sheet at the downstream side in the conveying direction passes is curved. Since the sheet conveying path 50 includes the curved portion, the space in the sheet folding apparatus 100 can be reduced compared to when the sheet conveying path is formed such that the sheet P is linearly conveyed. In addition, when the position of the folding line of the sheet is changed according to the sheet size, the folding type, or the like, the inclination of the front edge of the sheet P in the curved portion of the sheet conveying path 50 is adjusted by the sheeting position deciding unit configured with the sheet position defining member 6 or the like, and thus the oblique deviation of the folding line of the sheet P can be corrected. Thus, the space in the apparatus can be reduced, and even when the position of the folding line of the sheet P is changed according to the sheet size, the folding type, or the like, the oblique deviation of the folding line can be corrected.
Further, according to the present embodiment, the sheet position defining member 6 includes the abutting member 61 on which the front edge of the sheet P abuts on, the abutting position deciding shaft 60 that rotates the abutting member 61 to change the abutting position of the front edge of the sheet P in the curved portion of the sheet conveying path 50, and the sheet inclination correcting shaft 62 that rotates the abutting member 61 to change the inclination of the front edge of the sheet P in the width direction intersecting the sheet conveying direction of the sheet conveying path 50 formed to intersect the abutting position deciding shaft 60. The two-shaft structure of the abutting position deciding shaft 60 and the sheet inclination correcting shaft 62 is employed. Thus, the position of the folding line of the sheet P can be decided by adjusting the abutting position deciding shaft 60 of the sheet position defining member 6, and the oblique deviation of the folding line can be reliably corrected by adjusting the folding deviation correcting shaft 62 functioning as the sheet inclination correcting shaft.
Further, according to the present embodiment, provided are the folding deviation correcting shaft driving unit 105 that rotatably drives the folding deviation correcting shaft 62 of the sheet position defining member 6 and the control unit 101 functioning as the control unit that controls the folding deviation correcting shaft driving unit 105. Through the above configuration, even though the folding position of the sheet P changes, since the folding deviation correcting shaft 62 of the sheet position defining member 6 can be adjusted according to the folding position, the oblique deviation of the folding line can be reliably corrected regardless of the sheet size or the folding type.
Further, according to the present embodiment, the folding length measuring units 9 that measure the spatial length or the transit time between the folding line of the sheet P and the end edge of the sheet P in the conveying direction are arranged at a plurality of positions on the processed sheet conveying path 40, through which the sheet P having the folding line formed thereon is conveyed, in the width direction intersecting the sheet conveying direction. The control unit 101 controls the folding deviation correcting shaft driving unit 105 based on the measurement results of the folding length measuring units 9. Through this control, the oblique deviation of the sheet can be adjusted without time and effort of measuring the length of the oblique deviation and manually adjusting the oblique deviation by human.
Further, according to the invention, the folding length measuring units 9 are provided on two or more different positions on the processed sheet conveying path 40 in the width direction intersecting the sheet conveying direction. Thus, the oblique deviation of the folding line can be reliably corrected on a plurality of kinds of sheets having different sizes in the width direction. Particularly, even when the width size of the sheet is large, the oblique deviation of the sheet can be reliably corrected with a high degree of accuracy.
Further, according to the invention, arranged is the display unit 603 functioning as the display unit that displays the measurement result of the folding length measuring unit 9. Thus, the user can easily adjust an inclination while seeing the display.
Further, according to the invention, arranged is the recording unit 106 functioning as the storage unit that stores the correction control information in which the folding position of the sheet P is associated with the inclination of the front edge of the sheet P or the correction quantity (folding deviation correction quantity) of the folding deviation correcting shaft 62 functioning as the sheet inclination correcting shaft. The control unit 101 performs control based on the correction control information such that the inclination of the front edge of the sheet P is changed according to the folding position of the sheet P. In this case, since it is unnecessary to measure the folding deviation quantity each time, a load of the control unit 101 can be reduced.
Further, according to the invention, arranged are the imaging forming apparatus 600 functioning as the image forming unit that forms the image on the sheet and the sheet folding apparatus 100 of the above configuration which is an image forming system including the sheet processing unit of performing the folding process on the sheet and that functions as the sheet processing unit. A series of processes from a process of forming an image on the sheet P to a folding process of forming a folding line at a predetermined position of the sheet P on which the image is formed can be performed through this image forming system. Thus, the space in the sheet folding apparatus can be reduced, and the whole image forming system can be scaled down. Further, even when the position of the folding line of the sheet P changes according to the sheet size, the folding type, or the like, the oblique deviation of the folding line can be corrected.
According to the embodiments of the invention, a sheet conveying path is formed by a conveying path forming member such that a portion, through which at least a front edge of a sheet at a downstream side in a conveying direction passes, is curved. Since the sheet conveying path includes the curved portion, an inner space of a sheet folding apparatus can be reduced compared to the case where a sheet conveying path is formed such that a sheet is linearly conveyed. In addition, when an inclination of the front edge of the sheet in the curved portion of the sheet conveying path is adjusted by the sheet position defining unit so that the position of a folding line of a sheet can be changed depending on the sheet size, the folding type, or the like, the oblique deviation of the folding line of the sheet can be corrected. Thus, according to the embodiments of the invention, an inner space of an apparatus can be reduced. Moreover, even when the position of the folding line of the sheet is changed according to the sheet size, the folding type, or the like, the oblique deviation of the folding line can be corrected.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2011-038691 | Feb 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6251054 | Cruz et al. | Jun 2001 | B1 |
7597311 | Kawata et al. | Oct 2009 | B2 |
7712732 | Horii et al. | May 2010 | B2 |
8062201 | Mimura et al. | Nov 2011 | B2 |
20090062100 | Takekawa et al. | Mar 2009 | A1 |
20090129840 | Takekawa et al. | May 2009 | A1 |
20100252981 | Kimata et al. | Oct 2010 | A1 |
20100284720 | Hayashi | Nov 2010 | A1 |
20100304947 | Itou | Dec 2010 | A1 |
20110058876 | Yasuda et al. | Mar 2011 | A1 |
20110101591 | Sano et al. | May 2011 | A1 |
20110101593 | Imazu et al. | May 2011 | A1 |
20110190109 | Kimata | Aug 2011 | A1 |
20110190110 | Honda | Aug 2011 | A1 |
20110212817 | Imazu et al. | Sep 2011 | A1 |
20110221125 | Kimata | Sep 2011 | A1 |
20120071310 | Satoh | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
4238193 | Dec 2008 | JP |
4425101 | Dec 2009 | JP |
2012121686 | Jun 2012 | JP |
Entry |
---|
English Language abstract for Patent Publication No. JP-2006-001736 Corresponds to JP-4238193. |
English language abstract for patent publication No. JP-2006-076776 coresponds to JP-4425101. |
Number | Date | Country | |
---|---|---|---|
20120220440 A1 | Aug 2012 | US |