The present invention relates to a sheet processing apparatus capable of selecting an optimum sheet discharge mode based on a sheet type.
There are conventionally known sheet processing apparatuses configured to discharge sheets on which images have been formed by an image forming apparatus, such as a printer or a scanner, to a stack tray without applying additional processing thereto or after applying post-processing, such as stapling, to the image-formed sheets (see JP 2009-263027A, JP 2009-126658A). A sheet processing apparatus of this type is provided with a conveying roller pair for conveying a sheet onto a processing tray and a forward/reverse rotatable discharge roller pair for discharging, at a sheet carry-out port, a sheet to a stack tray. Further, such a sheet processing apparatus can operate in a non-stapling mode to discharge a sheet fed from the conveying roller pair directly to a stack tray by means of the discharge roller pair which is in a pressure contact state and a stapling mode to apply post-processing, such as stapling, after switching back a plurality of sheets (sheet bundle) discharged onto a processing tray, and store the resultant sheets on the stack tray.
The sheet processing apparatuses disclosed in JP 2009-263027A and JP 2009-126658A are configured to make the sheet from the conveying roller pair fall onto the processing tray. However, the absence of a lower guide for guiding the sheet to a pressure contact part of the discharge roller pair may cause a problem depending on the sheet conveyance condition or sheet type where the front end of the sheet collides with the circumferential surface of the discharge roller pair, preventing smooth discharge of the sheet.
A sheet processing apparatus includes: a stack tray on which a sheet is stacked; a discharge roller pair composed of first and second rollers and configured to discharge a sheet onto the stack tray, the second roller being configured to be movable between a pressure contact position to contact with the first roller and a retracting position to separate from the first roller; and a pressure contact/separation mechanism for moving the second roller from the retracting position to the pressure contact position. The pressure contact/separation mechanism changes the timing at which the second roller reaches the pressure contact position according to the type of a sheet to be discharged.
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. First, with reference to
The image forming system A is composed of an image forming apparatus B and the sheet processing apparatus C. The image forming apparatus B and the sheet processing apparatus C are connected to each other through a carry-out port 3 of the image forming apparatus B and a carry-in port 22 of the sheet processing apparatus C. A sheet on which an image has been formed by the image forming apparatus B is discharged onto a stack tray 21a or 21b passing through the sheet processing apparatus C.
The image forming apparatus B is configured to feed a sheet from a sheet supply part 1 to an image forming part 2, print an image on the sheet in the image forming part 2, and discharge the resultant sheet through the carry-out port 3. In the sheet supply part 1, sheets with different sizes are stored in sheet cassettes la and lb, and designated sheets are separated one from another and fed to the image forming part 2. The image forming part 2 is provided with, for example, an electrostatic drum 4, and a print head (not illustrated), a developing unit 6, a transfer charger 7 and a fixing unit 8 which are disposed around the electrostatic drum 4. Image formation on a sheet is performed as follows: an electrostatic latent image is formed on the electrostatic drum 4, added with toner by the developing unit 6, transferred onto the sheet by the transfer charger 7, followed by heating by the fixing unit 8, whereby an image is formed on the sheet. The sheet with the image thus formed is sequentially carried out toward the sheet processing apparatus C through the s carry-out port 3. In a circulating path 9, a sheet, on the front surface of which has been subjected to image formation and fed from the fixing unit 8 is face-reversed in a switchback path 10 and is fed again to the image forming part 2, whereby double-sided printing is achieved. The double-sided printed sheet is face-reversed in the switchback path 10 and carried out toward the sheet processing apparatus C through the carry-out port 3.
An image reading device 11 scans a document sheet set on a platen 12 by means of a scan unit 13 and electrically reads the document sheet by means of a photoelectric conversion element 14. The read image data is subjected to, e.g., digital processing by an image processing part (not illustrated). A document feeder 15 feds a document sheet set on a stack tray 16 to the platen 12.
The thus configured image forming apparatus B is provided with a control part (not illustrated). The control part sets image forming conditions, for example, printing conditions such as designation of sheet size, designation of color/monochrome printing, designation of the number of copies to be printed, designation of single sided/double sided printing, and designation of enlarged/reduced printing.
The sheet processing apparatus C according to the present invention is provided with a normal discharge unit that directly discharges a sheet carried in through the carry-in port 22 by way of a carry-in roller pair 23, a post-processing unit that is disposed on one end side on a processing tray 28 and applies stapling to a sheet at a stapling position on the processing tray 28, and a control unit for controlling the sheet post-processing and sheet discharge. The normal discharge unit selectively discharges a sheet with an image formed by the image forming apparatus B to the stack tray 21a or 21b. The post-processing unit according to the present embodiment, which is provided with a stapling unit 30, applies stapling to a sheet bundle with images formed by the image forming apparatus B and discharges the bound sheet bundle to the stack tray 21b.
A conveying path R extends downward in a sheet conveying direction from the carry-in port 22 and is branched into a first discharge path R1 directed to the upper stack tray 21a and a second discharge path R2 directed to the lower stack tray 21b through a flapper Ra. The first discharge path R1 is provided with a first conveying roller pair 24 arranged on the upstream side and a first discharge roller pair 25 arranged downstream from the first conveying roller pair 24. The second discharge path R2 is provided with a second conveying roller pair 26 arranged on the upstream side and a second discharge roller pair 27 arranged downstream from the second conveying roller pair 26. The second discharge roller pair 27 is positioned at a carry-out port 29. The second conveying roller pair 26 is disposed above the processing tray 28 and conveys a sheet onto the processing tray 28. The second discharge roller pair 27 is disposed on the other end side of the processing tray 28 and discharges a sheet that has been subjected to post-processing on the processing tray 28 and a sheet from the second conveying roller pair 26.
The first conveying roller pair 24 and the first discharge roller pair 25 are each composed of a drive motor rotated by a not-shown drive motor and a driven roller rotated following the drive roller and each discharge a sheet toward the stack tray 21a in a pressure contact state.
As illustrated in
The upper drive roller 27a of the second discharge roller pair 27 is fitted to one end of a first arm 32 which is swingable about a rotary shaft 26a1 of the drive roller 26a of the second conveying roller pair 26. The first arm 32 is connected to a pressure contact motor MT3 through a link member 33 and a rack-and-pinion member 34. Driving the pressure contact motor MT3 allows the upper drive roller 27a to be vertically moved between a pressure contact position to be brought into pressure contact with the lower drive roller 27b and a waiting position separated therefrom.
Besides, as a mechanism concerning the stapling unit 30, there is provided a raking roller 35 configured to be brought into pressure contact with a sheet conveyed onto the processing tray 28 to guide the sheet to the stapling unit 30. The processing tray 28 is formed of a synthesis resin plate and has an upper surface serving as a sheet support surface 28a on which sheets are stacked and supported. The sheet support surface 28a is present on the downstream side relative to the second conveying roller pair 26 with a level difference formed therebetween, and sheets from the second conveying roller pair 26 are stored and stacked thereon. As illustrated in
In the second discharge path R2, a sheet sensor SE is provided in the vicinity of the upstream side relative to the second conveying roller pair 26. The sheet sensor SE detects the front end of a sheet fed along the second discharge path R2.
The sheet processing apparatus C according to the present invention can operate in a stapling mode to apply post-processing (stapling) to a sheet conveyed from the second conveying roller pair 26 on the processing tray 28 and discharge the resultant sheet onto the stack tray 21b by means of the gripper 31 and in a non-stapling mode to discharge a sheet fed from the second conveying roller pair 26 directly onto the stack tray 21b by means of the second discharge roller pair 27. In the present embodiment, upon sheet discharge onto the second stack tray 21b in the non-stapling mode, the second discharge roller pair 27 is switched from a separated state to a pressure contact state, and the timing at which the second discharge roller pair 27 is brought into a pressure contact state is changed according to the sheet type (regular sheet, envelope). Specifically, in the case of an envelope, at the timing when the front end of the envelope reaches a predetermined position between a pressure contact position P2 of the second discharge roller pair 27 and the second stack tray 21b, the second discharge roller pair 27 is brought into a pressure contact state. On the other hand, in the case of a sheet other than an envelope, the second discharge roller pair 27 is brought into a pressure contact state after the front end of the sheet reaches the second stack tray 21b.
In the case of the envelope, the envelope is discharged onto the second stack tray 21b with the front surface side thereof faced downward; however, when the discharge on the second stack tray 21b is performed in a state where the second discharge roller pair 27 is in a separated state, a front end Sa of a succeeding envelope S collides with a flap part Sf of an envelope S that has already been stored on the stack tray 21b. To cope with this, in the present invention, the envelope S is nipped by the second discharge roller pair 27 before it is discharged onto the second stack tray 21b, thus preventing collision with the flap part Sf of the preceding envelope S.
Hereinafter, a discharge operation of a sheet (regular sheet, envelope) in the non-staple mode will be described in detail based on a flowchart illustrated in
A regular sheet or an envelope is conveyed from the image forming apparatus B to the sheet processing apparatus C (sheet discharge operation from the image forming apparatus B) (STO1). At this point of time, the non-stapling mode has been designated by the image forming apparatus B. When the sheet from the image forming apparatus B is detected by the sheet sensor SE, the conveying motor MT1, discharge motor MT2, and switchback motor MT4 are driven (ST02 to ST03). Then, the second discharge roller pair 27 is brought into a pressure contact state (ST04). In this pressure contact operation, whether a sheet to be fed is a regular sheet or an envelope is first determined (ST04-1).
When the type of the sheet is a regular sheet, the pressure contact motor MT3 starts forward driving at the point of time when the sheet is fed by a first conveyance amount L1 from when the front end of the sheet is detected by the sheet sensor SE (ST04-2, ST04-4) (see
On the other hand, when the type of the sheet is an envelope, the pressure contact motor MT3 starts forward driving at the point of time when the sheet is fed by a second conveyance amount L2 from when the front end Sa of the sheet S is detected by the sheet sensor SE (ST04-3, ST04-4) (see
The second discharge roller pair 27 (specifically, the upper drive roller 27a) is normally at the waiting position, so that the second discharge roller pair 27 is already in a separated state when the front end Sa of the sheet S is detected by the sheet sensor SE. Then, when the rear end Sb of the sheet S is detected by the sheet senor SE after completion of the pressure contact operation of the second discharge roller pair 27, the sheet S is fed by a third conveyance amount L3 from this point of time, and the conveying motor MT1, discharge motor MT2, and switchback motor MT4 are stopped (ST05 to ST07). As a result, the sheet S is discharged onto the stack tray 21b. The third conveyance amount L3 is obtained by adding a predetermined amount to a conveyance amount corresponding to the moving distance of the rear end Sb of the sheet S between the detection position P1 of the sensor SE and the stack surface of the second stack tray 21b.
The above first, second, and third conveyance amounts are each the drive amounts (drive times) of the second conveying roller pair 26 and second discharge roller pair 27. In the present embodiment, the number of pulses corresponding to each of the first, second, and third conveyance amounts is previously set, and the numbers of drive pulses of the conveying motor MT1, discharge motor MT2, and switchback motor MT4 are counted. Then, when the count value reaches the set pulse number, it is detected that the sheet has been conveyed by the designated conveyance amount.
After discharge of the sheet S onto the second stack tray 21b and stop of the conveying motor MT1, discharge motor MT2, and switchback motor MT4, the pressure contact motor MT3 is reverse driven by a predetermined amount and stopped (ST08 to ST10). As a result, the upper drive roller 27a is moved from the pressure contact position to the waiting position to be separated from the lower drive roller 27b.
As described above, the sheet processing apparatus according to the present invention is configured to, in the sheet discharge operation of discharging a sheet onto the second stack tray 21b in the non-stapling mode, make the front end of the sheet pass the second discharge roller pair 27 which is in a separated state and bring the second discharge roller pair 27 into a pressure contact state after the front end of the sheet passes the second discharge roller pair 27. This allows the sheet to be smoothly discharged. Further, the timing at which the sheet is nipped by the second discharge roller pair 27 can be changed according to the type of a sheet to be discharged. Specifically, in a case where the sheet type is an envelope having a flap part, the second discharge roller pair 27 is brought into a pressure contact state before the front end of the envelope reaches the second stack tray 21b. Thus, even when the sheet type is an envelope, the sheets on the stack tray 21b can remain in alignment.
This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2020-149890 filed Sep. 7, 2020, the entire contents of which are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2020-149890 | Sep 2020 | JP | national |