This application is entitled to and claims the benefit of Japanese Patent Application No. 2011-249596, filed on Nov. 15, 2011, the disclosure of which including the specification, drawings and abstract is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to a sheet processing device performing a process such as a sheet center-folding process and an image forming system including the sheet processing device.
2. Description of Related Art
Conventionally, devices have been proposed to perform a sheet processing including the sheet center-folding process.
Japanese Patent Application Laid-Open No. 2005-96913 discloses technology that changes the posture of a sheet, and then performs a center-folding process and a saddle-stitching process. In Japanese Patent Application Laid-Open No. 2005-96913, a manner of changing the sheet posture so as to achieve rapid and reliable changes in sheet posture with respect to various sheet sizes has been proposed.
Japanese Patent Application Laid-Open No. 2011-111243 discloses a device that forms a fold along a direction orthogonal to a sheet feed-in direction, and that feeds a sheet along the direction of the fold (i.e., the direction orthogonal to the feed-in direction).
On the other hand, the device disclosed in Japanese Patent Application Laid-Open No. 2005-96913 changes the posture of a sheet three times. Accordingly, because a mechanism for changing the posture of the sheet is complicated and extra space is required to change the posture of the sheet, it is thought that the device is more susceptible to increase in size.
In contrast, a device for forming a fold in a sheet along a direction orthogonal to the feed-in direction of the sheet and feeding the sheet along the direction of the fold, such as that disclosed in Japanese Patent Application Laid-Open 2001-111243, is not required to change the posture of the sheet much at all, and therefore is preferable because its configuration can be miniaturized.
However, the sheet processing device disclosed in Japanese Patent Application Laid-Open 2011-111243 is a device which is specialized to fold sheets. Thus, it is thought that the device may be practically insufficient as a finisher for an image forming device such as a copy machine and a laser beam printer. In other words, when the device is employed as the finisher for the image forming device, it is convenient if a mode for saddle-stitching or a mode for ejecting the sheet as it is can be selected in addition to a mode for center-folding the sheet.
However, with respect to conventional sheet processing devices which include the one disclose in Japanese Patent Application Laid-Open 2011-111243, a configuration which is capable of combining both a sheet center-folding process and a process other than center-folding (e.g., the type of arrangement of a part performing the center-folding and a part performing a process other than the center-folding within the device, and the manner in which sheets are fed) has not been sufficiently considered. Depending on an arrangement and feeding path, a problem may arise where the feeding path becomes complicated, thereby complicating and increasing the size of the overall configuration of the apparatus, and also the fractional sound of a sheet at the time of feeding.
A sheet processing device reflecting one aspect of the present invention includes a sheet feeder that feeds a sheet fed thereinto, by switching to any one of a first direction that is the same as a feed-in direction of a sheet and a second direction orthogonal to the first direction; a second sheet processor that is arranged in the second direction and that performs a process including a center-folding process on the sheet, and a first sheet processor that is arranged in the first direction and that performs a process other than the center-folding process on the sheet.
The present invention will become more fully understood from the detailed description given hereinbelow and the appended drawings which are given by way of illustration only, and thus are not intended as a definition of the limits of the present invention, and wherein:
Hereinafter, embodiments of the present invention will be specifically described based on the accompanying drawings.
As shown in
Image forming unit 20 forms an image which is a toner image on a sheet, and is the part referred to as a copy machine or a printer. Image forming unit 20 includes a scanner, an exposure device, a photoconductive drum, a developing device, and a fixing device, and/or the like, and is for forming a toner image on a sheet and ejecting the sheet on which the toner image has been formed.
Sheet processor 30 includes stacker 40, first sheet processor 50, and second sheet processor 100.
Sheet processor 30 is able to feed a sheet which has been fed thereinto (i.e., a printed sheet ejected from image forming unit 20) while switching to any one of first direction D1 which is the same direction as the feed-in direction of the sheet and second direction D2 which is orthogonal to first direction D1.
First sheet processor 50 is arranged in first direction D1. Second sheet processor 100 is arranged in second direction D2. In addition, second sheet processor 100 includes a common path forming feeding branch point 50 of first sheet processor 50 and second sheet processor 100. In other words, a printed sheet is fed into first sheet processor 50 via a part of second sheet processor 100.
First sheet processor 50 executes a process other than center-folding on the sheet. First sheet processor 50 is a sheet ejection tray, a side stitching stapler, a hole puncher, a case bookbinding (a glue binding) machine, and/or the like, which executes a bulk-loading process, a side-stitching process, a hole-punching process, a case bookbinding process, and/or the like, on printed sheets. Moreover, the configuration of first sheet processor 50 is not limited to one which executes a process mentioned above, and thus may execute another process other than center-folding.
Second sheet processor 100 executes a process including a center-folding process on the sheet.
Stacker 40 stacks a predetermined number of sheets, and ejects the sheets in the direction of the arrow shown in the drawings, namely, toward feeding branch point K0 (may also be referred to as “toward second sheet processor 100”). For example, five sheets stacked by stacker 40 are thereby simultaneously center-folding by second sheet processor 100. Moreover, providing stacker 40 allows for printed sheets to be stocked in stacker 40 (i.e., stacker 40 functions as a buffer) even when time is needed in first sheet processor 50 and second sheet processor 100 after stacking, so that the processing of image forming unit 20 in the previous stage does not have to be stopped and a reduction in productivity can be prevented.
Second sheet processor 100, a feeder mechanism of a common path including branch point K0 in
The feeder mechanism in
Sheet in-feeder 110 includes a pair of top and bottom feeder rollers 111. A sheet is sandwiched between feeder rollers 111, and is fed in first direction D1 by the torque of feeder rollers 111. Additionally, feeder rollers 111 are driven by drive gear 112.
Sheet in-feeder 110 includes biasing member 113, Biasing member 113 is fixed on the surface of timing belt 115 extended between drive pulleys 114, and is movable along with timing belt 115 in a clockwise direction and an anticlockwise direction in the drawing.
Sheet out-feeder 120 includes a pair of top and bottom feeder belts 121. A sheet is sandwiched between top and bottom feeder belts 121, and is fed in first, direction D1 by the torque of feeder belts 121. A plurality of feeder belts 121 are arranged next to each other at predetermined intervals in a direction orthogonal to the plane of this drawing (refer to
Sheet out-feeder 120 includes front-end regulation member 122. Front-end regulation member 122 abuts against the front end of the sheet, and regulates the sheet front-end position. Furthermore, front-end regulation member 122 can enter and withdraw from a feeding path.
Center-folder 130 includes two nip rollers 131, and thin-plate folding knife 132 for pushing the sheet between nip rollers 131. The rotational axis of nip rollers 131 is parallel to the rotational axes of feeder rollers 111 and drive gear 112. Both feeder rollers 111 and nip rollers 131 can be driven by drive gear 112. Accordingly, the driving source for sheet feeding and center-folding is easily shared by configuring second sheet processor 100 to include a common feeding path which forms a branch point of the feeding path in first direction D1 and the feeding path in second direction D2, and executing the center-folding process at the common feeding path. Moreover, a nip line of nip rollers 131 is orthogonal to first direction D1. Specifically, the nip line is formed in the direction orthogonal to the plane of the drawing.
The main operations performed by the feeder/center-folding mechanisms are as follows:
Hereinafter, each operation will be specifically described.
As shown in
A sheet positioning operation is performed as preprocessing when the center-folding process is executed. As shown in
(iii) Center-folding Operation
When the sheet ejection operation is executed in first direction D1, the above mentioned sheet positioning operation and the center-folding operation are not executed, similarly to the sheet feeding operation, sheet 1 is sandwiched between top and bottom feeder rollers 111 and top and bottom feeder belts 121, fed in first direction D1, and ejected. At this time, it is impossible to eject the sheet with the front-end regulation member 122 staying in a protruded state such as shown in
Sheet 1 in which a fold has been formed and which has been returned from nip rollers 131 to the feeding path is pushed in second direction D2 by pushing claw 134, as shown in
Main saddle 140 is for placing center-folded sheet 1 ejected from the abovementioned center-folding mechanism, therein.
Stapler 150 is provided above main saddle 140, and descends toward main saddle 140 so as to saddle-stitch sheets placed on main saddle 140. Furthermore, the positions of main saddle 140 and stapler 150 are fixed with respect to second direction D2.
Buffer saddle 160 is provided separately from main saddle 140, and is movable with saddle-stitched sheets placed thereon. Main saddle 140 and buffer saddle 160 are serially arranged in the folding direction of center-folded sheets. Buffer saddle 160 is pivotally supported at slide shaft 161, and moved in second direction D2 and the opposite direction thereto by drive belt 162. Moreover, base 163 of buffer saddle 160 is pivotally supported at slide shaft 164, and moved in direction D3 orthogonal to second direction D2 and the opposite direction there to by drive belt 165.
Moreover, first feeding member 171, second feeding member 172, and positioning member 173 are provided in the saddling and saddle-stitching mechanisms. First feeding member 171, second feeding member 172, and positioning member 173 are respectively movable in second direction D2 and the opposite direction thereof.
Next, an operation of the saddling mechanism and an operation of the saddle-stitching mechanism of the present embodiment will be described with reference to
First, as shown in
Next, as shown in
Next, as shown in
Then, as shown in
Next, as shown in
Accordingly, providing main saddle 140 on which in-fed center-folded sheets 1 are to be placed, stapler 150 which is provided above main saddle 140 and which is for saddle-stitching sheets 1 placed on main saddle 140, and buffer saddle 160 which is provided separately from main saddle 140 and which is movable with saddle-stitched sheets 1 placed thereon, allows the saddle-stitching process to be carried out by main saddle 140, and the feeding of sheets 1 to be carried out by buffer saddle 160. As a result, a saddling mechanism that is needed to perform both saddle-stitching and feeding of sheets with a simple configuration and high-speed processing can be achieved.
Moreover, setting fixed positions to second direction D2 for stapler 150 and a member that receives stapler 150 at main saddle 140 side at the time of stapling and to move sheets 1 in second direction D2 by first feeding member 171 and second feeding member 172, so that the positional relationship of stapler 150 and the member that receives stapler 150 at main saddle 140 side at the time of stapling is not shifted, and the bending of the legs of a staple can be performed stably and highly accurately at the time of stapling. As a result, the accuracy of saddle-stitching is increased. Furthermore, the level of silence can be increased.
As shown in
Accordingly, arranging ejected sheet tray 190 above cutter 180 allows a user to easily take the booklet. Moreover, the installation area of the device can be miniaturized.
As shown in
As shown in
In the present embodiment, retaining plate 220 is provided in order to change the holding position.
An operation will be described. First, lifter 200 performs a square folding process via square folding member 230, as shown in
Then, after lifter 200 is raised to a certain position, retaining plate 220 is rotated so as to be in a horizontal state, as shown in
Holding the tipper end proximity (the fold) of booklet 1 and accurately closing booklet 1 allows an accurate square folding process and a cutting process to be performed. Moreover, changing the holding position to the second holding position lower than the first holding position allows direction changer 210 positioned above cutter 180 to appropriately receive booklet 1.
As described above, according to the present embodiment, a sheet feeder (feeder rollers 111, feeder belts 121, pushing claw 134) that feeds a sheet fed thereinto by switching to any one of first direction D1 that is the same as a feed-in direction of sheet 1 and second direction D2 orthogonal to first direction D1, second sheet processor 100 that is arranged in second direction D2 and that performs a process including the center-folding process on sheet 1, and first sheet processor 50 that is arranged in first direction D1 and that performs a process other than the center-folding process on sheet 1. Accordingly, omitting the needless movement of sheets, and performing a sheet process that includes sheet center-folding and a sheet process that does not include sheet center-folding is possible. As a result, a sheet processing device can be achieved which has a relatively simple configuration and excellent low-noise property, and which is capable of performing a plurality of sheet, processes including high-speed center-folding.
Moreover, because second sheet processor 100 is configured to include a common feeding path forming a branch point of a feeding path in first direction D1 and a feeding path in second direction D2, and the center-folding process is performed at the common feeding path, the driving source for sheet feeding and center-folding can be easily shared and the configuration can be simplified.
Furthermore, because a common feeding path that forms a branch point of the feeding path in first direction D1 and the feeding path in second direction D2 is arranged in one plane, and sheets 1 are separated and fed in first direction D1 and second direction D2 on the plane, sheets can be separated within a small space and the device can be miniaturized.
An invention made by the present inventor has been specifically described above based on an exemplary embodiment. However, the present invention is not limited to the embodiment described above, and changes can be made without departing from the spirit of the invention.
In the embodiment described above, a case is described where feeder rollers 111, feeder belts 121, and pushing claw 134 are used as the sheet feeder that feeds a sheet, which has been fed thereinto, by switching to any one of first direction D1 that is the same as a feed-in direction of sheet 1 and second direction D2 orthogonal to first direction D1, but the configuration of the sheet feeder is not limited to such an embodiment.
The embodiment disclosed herein is exemplary in every aspect, and therefore not understood to be restrictive. The scope of the present invention is indicated not by the description above, but by the appended claims, and all modifications equivalent in meaning and scope to the claims fall within the scope of the claimed invention.
Number | Date | Country | Kind |
---|---|---|---|
2011-249596 | Nov 2011 | JP | national |