Field of the Invention
The present invention relates to a device for folding a sheet bundle formed by sheets that are sequentially carried out from an image forming device such as a copier or a printer and accumulated in a bundle and, more particularly, to a sheet processing device that performs pressing against a fold of a two-folded sheet bundle.
Description of the Related Art
There are widely known processing devices that align sheets carried out from an image forming device, bind them, and fold them into a booklet. Among them, some processing devices are configured to saddle-stitch the sheet bundle with a staple or an adhesive and fold the sheet bundle into a booklet.
Such a device performs folding for sheet bundle formed by about 20 to 30 sheets in half; however, there may be a case where the two-folded sheet bundle is unintentionally opened after being discharged from the device, degrading aligning property of the sheet bundle, which results in reduction in accumulation amount.
Thus, it is widely known that, after the folding, the two-folded sheet bundle is subjected to pressing from above and below the fold.
For example, Japanese Patent No. 4,217,640 discloses a device that moves along a fold of a two-folded sheet bundle while pinching/pressing the fold by means of rollers disposed above and below the fold. This device is also provided with a flattening roller that presses the fold from a front side thereof at a position slightly rearward of the pinching/pressing position of the upper and lower rollers. That is, in this device, the rollers that pinch/press the fold from thereabove and therebelow and flattening roller that presses the fold from the front side thereof are formed into one unit, and this unit is moved along the sheet folding direction. Thus, only a portion that is pinched by the rollers can be made flat, thereby reducing wrinkles and breaks of a portion other than the fold due to a difference in gripping force.
Further, as illustrated in detail in
Further, Jpn. Pat. Appln. Laid-Open Publication No. 2014-76903 discloses a processing device provided with a pair of pressing rollers that press a fold of a two-folded sheet bundle in a sheet width direction and a moving unit that reciprocates the pressing roller pair in the sheet width direction. Further, this processing device is configured to move the pressing roller pair between a position where they are separated away from each other and a position where they are brought into pressure contact with each other. Upon pressing the sheet bundle, the moving unit moves inward from an end portion in the sheet width direction with the pressing roller pair separated away from each other and then moves from the inside to one end portion of the sheet bundle while pressing the sheet bundle. After passing the one end portion, pressing by the pressing roller pair is released to separate the pressing roller pair away from each other. When moving again for pressing, the moving unit passes the one end position of the sheet bundle with the pressing roller pair separated away from each other and then moves from the inside to the other end portion of the sheet bundle while pressing the sheet bundle. In other words, the pressing against the fold of the sheet bundle is started from the inside in the sheet width direction to the one or the other end portion of the sheet bundle.
The above-described devices that perform pressing against the folded sheet bundle carried out from an image forming device or the like have the following problems, respectively.
In the device disclosed in Japanese Patent No. 4,217,640, the roller pair that is previously brought into a pressure contact state is moved along the fold, so that even if the roller pair is reciprocated many times, the roller pair presses the same position, that is, the folded positions are overlapped in a straight line, with the result that the folded sheet bundle may be opened after the pressing. Thus, an accumulating property and an aligning property of the folded sheet bundle cannot be effectively improved.
Also, in the device disclosed in Jpn. Pat. Appln. Laid-Open Publication No. 2014-76903, the pressing against the fold of the sheet bundle by means of the pressing roller pair is repetitively performed with the same pressing force, so that, as in the case of the device disclosed in Japanese Patent No. 4,217,640, the folded positions are overlapped in a straight line, with the result that the folded sheet bundle may be opened after the pressing. Thus, improvement of the accumulating property and aligning property of the folded sheet bundle is conventionally difficult to achieve.
The present invention has been made in view of the above problems and based on the following idea. That is, when a fold of a folded sheet bundle is subjected to pressing, a plurality of pressing operations are not made for the same position of the fold but for different positions in a thickness direction of the fold, with the result that created fold lines are directed inward in the sheet thickness direction after the last pressing operation.
To solve the above problem, a sheet processing device according to the present invention includes: a pair of sheet pressing members that press a fold of a folded sheet bundle in a thickness direction of the fold; and a moving member that moves the sheet pressing member pair along the fold of the folded sheet bundle. The moving member supports a plurality of rows of the sheet pressing member pairs arranged in a moving direction of the moving member. The sheet pressing member pairs press the folded sheet bundle with the intervals therebetween in the respective rows reduced stepwise in the moving direction of the moving member.
The present invention provides the following effects by having the above features.
The first sheet pressing roller pair in the moving direction is moved in a sheet width direction while pressing the folded sheet bundle in the fold thickness direction in a state of being separated from each other to create a fold, and the second sheet pressing roller pair in the moving direction is moved in the sheet width direction while pressing the folded sheet bundle with the interval therebetween reduced to create a new fold, whereby the fold of the folded sheet bundle is directed inward. Thus, the sheet bundle itself is directed to its binding direction, thereby preventing the folded sheet bundle from being opened after the pressing, which allows more sheet bundles to be accumulated.
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
The image forming system illustrated in
[Configuration of Image Forming Device]
The image forming device A illustrated in
A reference numeral 11 is an image reading device. The image reading device 11 scans a document sheet set on a platen 12 using a scan unit 13, and light reflected from the document and passing through a reflective mirror and a condenser lens is electrically read by a photoelectric conversion element 14. This image data is subjected to, e.g., digital processing in an image processing section, transferred to a data storage section 17, from which an image signal corresponding to the resultant image data is transmitted to the laser emitter 5. A reference numeral 15 is a document feeder that feeds a document sheet housed in a document stacker 16 to the platen 12.
A controller is provided in the image forming device A having the above configuration, and image formation conditions, for example, print-out conditions such as sheet size designation, color/monochrome printing designation, number-of-copies designation, one-side/two-side printing designation, and scaling printing designation are set through a control panel 18. Further, in the image forming device A, image data read by the scan unit 13 or image data transferred from an external network is stored in the data storage section 17. The image data is transferred from the data storage section 17 to a buffer memory 19, from which data signals corresponding to the image data are sequentially transmitted to the laser emitter 5.
Upon input of the image formation conditions, sheet processing conditions are also input (designated) through the control panel 18. Through input of the sheet processing conditions, the following modes are designated. The image forming device A forms an image on the sheet according to the image formation conditions and post processing conditions.
[Configuration of Sheet Processing Device]
The sheet processing device B connected to the above-described image forming device A is configured to receive the image-formed sheet from the main body sheet discharge port 3 of the image forming device A and perform sheet processing according to one of the following modes.
The modes include: (1) “print-out mode” in which the image-formed sheet is housed in a first sheet discharge tray 21; (2) “staple-binding mode” in which the sheets from the main body sheet discharge port 3 are aligned in a bundle, bound by an end face stapler 33, and housed in the first sheet discharge tray 21; (3) “saddle stitching and folding mode” in which the sheets from the main body sheet discharge port 3 are aligned in a bundle in a stacker section 35 which is a second processing tray, bound at a portion near a center thereof using a saddle stitching stapler 40, folded into a booklet, and stored in a second sheet discharge tray 22; and (4) “folded sheet pressing mode” in which a sheet loop is pressed at a fold of a sheet bundle that has been saddle-stitched and folded into a booklet and then stored in the second sheet discharge tray 22.
As illustrated in
In such a path configuration, in the sheet carry-in path P1, there are disposed a carry-in roller 24 and a sheet discharge roller 25. The sheet discharge roller 25 is configured to be rotatable in normal and reverse directions. Further, in the sheet carry-in path P1, there is disposed a path switching piece (not illustrated) for guiding the sheet to the second switchback conveying path SP2, and the piece is coupled to an operation means such as a solenoid. Further, the sheet carry-in path P1 has, on the downstream side of the carry-in roller 24, a stamp means for performing stamping on the sheet fed from the carry-in port 23 or a single-sheet punching unit 28 for punching the sheets fed from the carry-in port 23 one by one.
[Configuration of First Switchback Conveying Path SP1]
The first switchback conveying path SP1 disposed on the downstream side (rear end portion of the device) of the sheet carry-in path P1 as illustrated in
Further, the first sheet discharge tray 21 is located downstream of the first switchback conveying path SP1 and is configured to support a leading end of the sheet to be guided to the first switchback conveying path SP1 and the second switchback conveying path SP2.
An end face stapler 33 is disposed at a rear end portion of the processing tray 29 in the sheet discharge direction. The illustrated end face stapler 33 staples a sheet bundle on the processing tray 29 at one or more positions of a rear end edge of the sheet bundle. The staple-bound sheet bundle is discharged onto the first sheet discharge tray 21.
The first switchback conveying path SP1 configured as described above aligns the sheets fed by the sheet discharge roller 25 on the processing tray 29 in the “(2) staple-binding mode” as described above, and the end face stapler 33 staples the sheet bundle at one or more portions of the rear end edge of this sheet bundle. In the “(1) print-out mode”, the sheet fed by the sheet discharge roller 25 is not subjected to the switchback, but conveyed along the processing tray 29 and discharged to the first sheet discharge tray 21 by a rotation of the normal/reverse rotation roller 30 in a clockwise direction in
[Configuration of Second Switchback Conveying Path SP2]
The following describes a configuration of the second switchback conveying path SP2 branched from the sheet carry-in path P1. The second switchback conveying path SP2 is a conveying path for guiding a switchback-conveyed sheet. That is, in a state where the sheet is nipped by the sheet discharge roller 25, rotation of the sheet discharge roller is changed from the normal rotation to the reverse rotation, with the result that the sheet is switchback-conveyed along the switchback conveying path SP2. As illustrated in
[Configuration of Stacker Section]
The stacker section 35 is formed of a guide member that guides the sheet being conveyed. The stacker section is configured such that the sheets are stacked and housed thereon. The illustrated stacker section 35 is connected to the second switchback conveying path SP2 and located in a center portion of the casing 20 so as to extend in the substantially vertical direction. This allows the device to be compactly configured. The stacker section 35 is shaped to have an appropriate size to house maximum sized sheets. In particular, the illustrated stacker section 35 is curved or bent so as to project toward an area in which the saddle stitching stapler 40 and the folding roller 45 to be described later are arranged.
A switchback approaching path 35a is connected to a conveying direction rear end of the stacker section 35. The switchback approaching path 35a overlaps the outlet end of the second switchback conveying path SP2. This is to allow the leading end of a carried-in (succeeding) sheet fed from the exit conveying roller 37 on the second switchback conveying path SP2 to overlap the rear end of the stacked (preceding) sheets supported on the stacker section 35 to ensure the page order of the stacked sheets. A leading end regulating member (hereinafter, referred to as stopper 38) regulating a sheet leading end of the sheet in the conveying direction is located downstream of the stacker section 35. The stopper 38 is supported by a guide rail and the like so as to be movable along the stacker section 35. The stopper 38 is configured to be movable to a position where the sheet is carried in the stacker section 35 by means of a not illustrated shift means, a position where the sheet bundle is bound at a center thereof in the stacking direction, and a position where the sheet bundle is folded by the folding roller 45. Further, an aligning means 39 for aligning the sheets is provided in the middle of the stacker section 35 in the sheet conveying direction. The aligning means 39 presses a side edge of the sheet for alignment every time the sheet is carried in.
[Saddle Stitching Stapler]
The saddle stitching stapler 40 positioned above the stacker section 35 includes a driver unit 41 and a clincher unit 42 which are arranged opposite to each other with respect to the stacker section 35. The driver unit 41 drives a staple into a sheet bundle. The clincher unit 42 bends leg portions of the driven staple in a direction facing each other. With this configuration, the sheet bundle is bound at a binding position X illustrated in
[Folding Roller]
The following describes a configuration of the folding roller 45. As illustrated in
Further, the folding blade 46 configured to be moved toward the pressure contact position of the folding roller pair 45 is disposed so as to be capable of advancing and retreating. After the sheet bundle is saddle-stitched by the saddle stitching stapler 40, the folding blade 46 is moved to push the binding position between the folding roller pair 45 to cause the folding roller pair 45 to be rotated while pressed against each other, whereby the saddle-stitched sheet bundle is center-folded. In the middle of the above folding processing, the folding blade 46 is returned to its original position and waits for the next sheet bundle. A movement path along which the folding blade 46 is moved is illustrated as the folding position Y which coincides with the binding position X of the sheet bundle.
Hereinafter, a procedure of folding processing of the stacked sheet bundle or stacked and saddle-stitched sheet bundle will be described using
Then, as illustrated in
The loop at the fold is generated due to action of force for the sheet bundle to be opened outward. Thus, the larger the number of the sheet bundle BS to be folded, the greater the force for the sheet bundle itself to be opened and spread. Accordingly, if no countermeasure is taken, a discharged sheet bundle is opened. So, in the present invention, sheet pressing to be described below is performed.
The folding roller 45 may be used for detecting a thickness of the sheet bundle BS to be folded. That is, by measuring a difference between a distance between axes of the upper and lower pressure contact rollers 45a and 45b in a state where the sheet bundle BS is not inserted and a distance therebetween in a state where the sheet bundle BS is inserted, the thickness of the sheet bundle BS can be detected.
[Sheet Pressing Device]
Hereinafter, the sheet pressing device 50 constituting a part of the sheet processing device according to the present invention will be described. The sheet pressing device 50 is a device for preventing the folded sheet bundle BS from being opened. First, a configuration of the sheet pressing device 50 will be described with reference to
As illustrated in
The sheet pressing device 50 illustrated in
As illustrated in
A moving belt 65 is provided above the pressing roller unit 56 so as to be stretched between the right side plate 53 and the left side plate 54. A right pulley 63 that winds the moving belt 65 is provided at the right side plate 53 side, and a left pulley 64 that winds the moving belt 65 is provided at the left side plate 54 side. One end of the moving belt 65 is fixed to a belt fixing portion 65b at an upper end of the pressing roller unit 56. Thus, when the moving belt 65 is moved to move the belt fixing portion 65b from a device back side (right side) to a device front side (left side), the pressing roller unit 56 is moved from the device back side (right side) to the device front side (left side) along the upper guide rail 57 and the lower guide rail 58. When the moving belt 65 is moved in the opposite direction, the belt fixing portion 65b is also moved in the opposite direction, which moves the pressing roller unit 56 in the opposite direction.
The left pulley 64 that winds the moving belt 65 is mounted to a motor gear unit 68 provided on the left side plate 54 and connected to a drive motor 69 configured to be rotatable in normal and reverse directions through the motor gear unit 68. Rotation drive of the drive motor 69 is transmitted from a motor output gear 67 to a transmission gear 66 provided in the motor gear unit 68, and then to the left pulley 64 of the moving belt 65. Thus, selecting a rotating direction of the drive motor 69 allows the pressing roller unit 56 to be moved selectively in the directions from the device back side (right side) to the device front side (left side) and from the device front side (left side) to the device back side (right side). A unit flag 107 is provided near a right side plate 53 side end portion on an upper surface of the pressing roller unit 56. The unit flag 107 indicates that the pressing roller unit 56 is situated at a home position near the right side plate 53. When the unit flag 107 is detected by a home position sensor 108, it can be determined that the pressing roller unit 56 is situated at the home position. When the pressing roller unit 56 is moved to the left in
[Pressing Roller Unit]
The following describes the pressing roller unit 56 configured to be moved to the left and right in
As illustrated in detail in
Further, a first upper pressing roller pressing spring 91a is interposed between the first upper pressing roller bracket 86a and the unit top plate 59a so as to bias the first upper pressing roller bracket 86a and the unit top plate 59a in a direction separating them from each other; similarly, a first lower pressing roller pressing spring 91b having the same function as the first upper pressing roller pressing spring 91a is interposed between the first lower pressing roller bracket 86b and the unit bottom plate 59b. With this configuration, the first upper pressing roller 71 and the first lower pressing roller 72 are always biased in a direction approaching each other. On the other hand, a first upper pressing roller shaft elongated hole 82a is formed in the unit base plate 62a and front upper base plate 62b that support the first upper pressing roller shaft 78a. Thus, the biasing force of the first upper pressing roller pressing spring 91a is regulated by the first upper pressing roller shaft elongated hole 82a, and downward movement of the first upper pressing roller 71 is also regulated by the first upper pressing roller shaft elongated hole 82a. Further, the biasing force of the first lower pressing roller pressing spring 91b is regulated by a first lower pressing roller shaft elongated hole 82b, and upward movement of the first lower pressing roller 72 is also regulated by the first lower pressing roller shaft elongated hole 82b. Thus, as illustrated in detail in
As can be seen well from
That is, the pressing rollers 70 of the second row includes a second upper pressing roller 73 and a second lower pressing roller 74 which are disposed opposite to each other and spaced apart from each other by a predetermined interval. The second upper and lower pressing rollers 73 and 74 have a second upper pressing roller shaft 79a and a second lower pressing roller shaft 79b, respectively. The second upper and lower pressing roller shafts 79a and 79b are supported by a second upper pressing roller bracket 87a and a second lower pressing roller bracket 87b, respectively. The second upper pressing roller bracket 87a is vertically movably supported by the unit top plate 59a, and the second lower pressing roller bracket 87b is vertically movably supported by the unit bottom plate 59b.
Further, a second upper pressing roller pressing spring 92a is interposed between the second upper pressing roller bracket 87a and the unit top plate 59a so as to bias the second upper pressing roller bracket 87a and unit top plate 59a in a direction separating them from each other; similarly, a second lower pressing roller pressing spring 92b having the same function as the second upper pressing roller pressing spring 92a is interposed between the second lower pressing roller bracket 87b and the unit bottom plate 59b.
With this configuration, the second upper pressing roller 73 and the second lower pressing roller 74 are always biased in a direction approaching each other. On the other hand, a second upper pressing roller shaft elongated hole 83a is formed in the unit base plate 62a and the front upper base plate 62b that support the second upper pressing roller shaft 79a. Thus, the biasing force of the second upper pressing roller pressing spring 92a is regulated by the second upper pressing roller shaft elongated hole 83a, and downward movement of the second upper pressing roller 73 is also regulated by the second upper pressing roller shaft elongated hole 83a. Further, the biasing force of the second lower pressing roller pressing spring 92b is regulated by a second lower pressing roller shaft elongated hole 83b, and upward movement of the second lower pressing roller 74 is also regulated by the second lower pressing roller shaft elongated hole 83b. Thus, as illustrated in detail in
Further, as can be seen well from
On the other hand, third upper and lower pressing rollers 75 and 76 of the third row are always elastically biased so as to be brought into pressure contact with each other. That is, a third upper pressing roller shaft elongated hole 84a and a third lower pressing roller shaft elongated hole 84b are formed such that a roller interval L3 is 0. A third upper pressing roller pressing spring 93a and a third lower pressing roller pressing spring 93b are set so as to apply a load of 4.0 kg to the third upper and lower pressing rollers 75 and 76 at the roller contact position. With this configuration, the sheet pressing is performed while a load exceeding 4 kg is applied to both sides of the fold of the folded sheet bundle BS.
As described above, the pressing rollers 70 as a sheet pressing member of the present invention include the first, second, and third upper pressing rollers 71, 73, and 75 and the first, second, and third lower pressing rollers 72, 74, and 76 which are disposed opposite respectively to the upper pressing rollers 71, 73, 75. The above pressing rollers 70 of a plurality of rows (in the present embodiment, three rows) are unitized as the pressing roller unit 56 and configured to be movable. Further, the above pressing rollers 70 can be rotated in the moving direction thereof. The pressing roller unit 56 is moved along the fold (in the sheet width direction) with the first upper and lower pressing rollers 71 and 72 of the first row, the interval between which is largest, in front. The interval between the second upper and lower pressing rollers 73 and 74 of the last row but one (in the present embodiment, second row) is made smaller. The third upper and lower pressing rollers 75 and 76 of the third row (last row in the moving direction) are configured to press the folded sheet bundle from both sides with a spring force of 4 kg. That is, in the present embodiment, the intervals between the pressing rollers of the respective rows are reduced stepwise from the first row to the last row. With this configuration, the pressing rollers of three rows arranged and supported in one unit are moved along the fold of the folded sheet bundle BS while pressing the folded sheet bundle BS from both sides. Further, the pressing rollers of each row are configured to press the folded sheet bundle BS from both sides with the pressing position set at a center of each roller pair.
[Operation of Sheet Pressing Device]
Hereinafter, carry-in of the folded sheet bundle BS to the sheet pressing device 50 and stepwise pressing operation will be described with reference to
In
In the pressing roller unit 56 situated at the home position, the intervals between the pair of pressing rollers 70 of the respective rows are reduced from the first row in the moving direction toward the last row. That is, the pair of pressing rollers 70 of the last row are brought into pressure contact with each other. As described above, in the present embodiment, the first upper and lower pressing rollers 71 and 72 of the first row are disposed at an interval of about 14 mm, the second upper and lower pressing rollers 73 and 74 of the second row are disposed at an interval of about 7 mm, and the third upper and lower pressing rollers 75 and 76 of the third row are brought into pressure contact with each other. A center of the separation and pressure contact between the pair of pressing rollers is set so as to coincide with the folding loop leading end (fold) BL1 which is a center of the folded sheet bundle BS.
When the folding loop of the folded sheet bundle BS becomes a predetermined size (in the present embodiment, 22 mm in the vertical direction of the loop), the folding roller 45 is stopped, and the drive motor 69 is driven to move the pressing roller unit 56 to the left in
When the pressing roller unit 56 is further moved, the loop of the folded sheet bundle BS pressed between the first upper and lower pressing rollers 71 and 72 is further pressed between the second upper and lower pressing rollers 73 and 74, the interval between which is slightly smaller than the interval between the first upper and lower pressing rollers 71 and 72, whereby a second fold is created. In the present embodiment, the interval between the second upper and lower pressing rollers 73 and 74 is set to about 7 mm, so that the second upper and lower pressing rollers 73 and 74 overlap the respective upper and lower portions of the loop which has been pressed by the first upper and lower pressing rollers 71 and 72, each by a length of about 3.5 mm.
Successively, the folding loop leading end BL1 is pressed between the third upper and lower pressing rollers 75 and 76. That is, the third upper and lower pressing rollers 75 and 76 are brought into a substantially pressure contact state with the interval therebetween set to 0, so that they press the fold while being pressed by the third upper and lower pressing roller pressing springs 93a and 93b by an amount corresponding to a thickness of the sheet bundle at the fold.
In the above description, the pressing roller unit 56 is returned to the home position after the pressed folded sheet bundle BS of
[Sheet Pressing Device of Second Embodiment]
The following describes a second embodiment different from the embodiment described above. The same reference numerals are given to the components having the same function and working effect as those of the components described in the above-described embodiment, and descriptions thereof will be omitted. The sheet pressing device of the second embodiment differs from that of the above-described embodiment in terms of a configuration of the pressing roller unit 56 incorporated in the sheet pressing device 50. That is, in the pressing roller unit 56 of the above embodiment, three rows of the pressing roller pairs 70 are arranged; on the other hand, in the second embodiment, the pressing roller unit 56 is provided for each row of the pressing roller pair 70. Hereinafter, based on the drawings, the second embodiment will be described.
As illustrated in
Further, as illustrated in
Thus, when the first moving belt 65a is moved to move the first belt fixing portion 65f1 from the device back side (right side) to device front side (left side), the first pressing roller unit 56a is moved from the device back side (right side) to device front side (left side) along the upper guide rail 57 and the lower guide rail 58.
The first left pulley 64a that winds the first moving belt 65a is mounted to the motor gear unit 68 provided on the left side plate 54 and connected to a drive motor 69a configured to be rotatable in normal and reverse directions through the motor gear unit 68. Rotation drive of the drive motor 69a is transmitted from a motor output gear 67a to a first transmission gear 66a provided in the motor gear unit 68, and then to the left pulley 64a of the first moving belt 65a.
The second left pulley 64b that winds the second moving belt 65b is mounted to the motor gear unit 68 provided on the left side plate 54 and connected to a drive motor 69b configured to be rotatable in normal and reverse directions through the motor gear unit 68. Rotation drive of the drive motor 69b is transmitted from a motor output gear 67b to a second transmission gear 66b provided in the motor gear unit 68, and then to the left pulley 64b of the second moving belt 65b.
Further, the third left pulley 64c that winds the third moving belt 65c is mounted to the motor gear unit 68 provided on the left side plate 54 and connected to a drive motor 69c configured to be rotatable in normal and reverse directions through the motor gear unit 68. Rotation drive of the drive motor 69c is transmitted from a motor output gear 67c to a third transmission gear 66c provided in the motor gear unit 68, and then to the left pulley 64c of the third moving belt 65c.
As described above, the driver motors 69 are configured to be able to move the moving belts 65 in a width direction of the folded sheet bundle.
Thus, selecting the rotating direction of the first drive motor 69a allows the first pressing roller unit 56a to be moved selectively in the directions from the device back side (right side) to the device front side (left side) and from the device front side (left side) to the device back side (right side). Also in this regard, the second and third pressing roller units 56b and 56c have the same configuration.
A unit flag 107a is provided near a right side plate side end portion on an upper surface of the first pressing roller unit 56a. The first unit flag 107a indicates that the first pressing roller unit 56a is situated at the home position near the right side plate 53. When the unit flag 107a is detected by a home position sensor 108a, it can be determined that the first pressing roller unit 56a is situated at the home position. When the first pressing roller unit 56a is moved to the left in the drawing from the home position, a position of the first pressing roller unit 56a is discriminated by a not illustrated pulse generator incorporated in the drive motor 69a, whereby it is determined that the first pressing roller unit 56a is situated at the returning position near the left side plate 54. Also this regard, the second and third pressing roller units 56b and 56c have the same configuration.
When the first pressing roller unit 56a, the second pressing roller unit 56b, and the third pressing roller unit 56c are situated at the returning position, the first drive motor 69a, the second drive motor 69b, and the third drive motor 69c are driven in this order to be rotated in the reverse direction to move the pressing roller units 56 toward the home position. Thus, the first pressing roller unit 56a, the second pressing roller unit 56b, and the third pressing roller unit 56c each serve as a moving member that is moved by means of the moving belts 65 and the like.
[Pressing Roller Unit of Second Embodiment]
The following describes the pressing roller units 56 configured to be moved to the left and right illustrated in
As illustrated in detail in
Further, the first upper pressing roller pressing spring 91a is interposed between the first upper pressing roller bracket 86a and unit top plate 59a1 so as to bias the first upper pressing roller bracket 86a and the first unit top plate 59a1 in a direction separating them from each other; similarly, the first lower pressing roller pressing spring 91b having the same function as the first upper pressing roller pressing spring 91a is interposed between the first lower pressing roller bracket 86b and the first unit bottom plate 59b1. With this configuration, the first upper pressing roller 71 and the first lower pressing roller 72 are always elastically biased in a direction approaching each other.
On the other hand, a first upper pressing roller shaft elongated hole 82a is formed in a first unit base plate 62a1 (positioned on the back side in
As can be seen from
Further, as can be seen well from
[Operation of Pressing Roller Unit of Second Embodiment]
Hereinafter, carry-in of the folded sheet bundle BS to the sheet pressing device 50 and stepwise pressing operation will be described with reference to
In
When the “folded sheet pressing mode” described above is set at this time, the pressing roller units 56 wait for carry-in of the folded sheet bundle BS that is subjected to the folding by the folding roller 45 and conveyed along the folded sheet conveying path PB.
The intervals between the pair of pressing rollers 70 of the respective rows supported in the pressing roller units 56 situated at the home position are reduced from the first row in the moving direction toward the last row. That is, the pair of pressing rollers 70 of the last row are brought into pressure contact with each other. As described above, in the present embodiment, the first upper and lower pressing rollers 71 and 72 supported in the first pressing roller unit 56a of the first row are disposed at an interval of about 14 mm, the second upper and lower pressing rollers 73 and 74 supported in the second pressing roller unit 56b of the second row are disposed at an interval of about 7 mm, and the third upper and lower pressing rollers 75 and 76 supported in the third pressing roller unit 56c of the third row are brought into pressure contact with each other. A center of the separation and pressure contact between the pair of pressing rollers is set so as to coincide with the folding loop leading end (fold) BL1 which is a center of the folded sheet bundle BS.
In
After being further moved, the first pressing roller unit 56a is stopped at the returning position at the left end as illustrated in
As described above, the folded sheet bundle BS is pressed stepwise sequentially by the moving three units. Then, as illustrated in
In the above description, the third pressing roller unit 56c, the second pressing roller unit 56b, and the first pressing roller unit 56a are returned in this order from the returning position to the home position after the pressed folded sheet bundle BS of
Further, the first to third pressing roller units 56a to 56c may be moved successively in the sheet fold direction without a space therebetween. In the manner as described above, in the present embodiment, three-step pressing operation is executed using the three units of the first to third pressing roller units 56a to 56c.
As described above, in the embodiments of the present invention including the second embodiment, the pressing roller unit 56 (or pressing roller units 56) is used to perform the three-step pressing operation for the folded sheet bundle BS. The following describes the folded sheet bundle BS in a state after being pressed and discharged with reference to
As described hereinbefore, the first upper and lower pressing rollers 71 and 72 as the sheet bundle pressing member of the present invention are moved, along the fold direction, on a part of the folded sheet bundle BS where the fold is created by the folding roller 45 and thus the loop is generated while pressing the folded sheet bundle BS in a thickness direction (vertical direction crossing, at the fold of the folded sheet bundle BS, a conveying direction of the folded sheet bundle BS) of the fold to thereby create a plurality of folds. As described above, the interval between the first upper and lower pressing rollers 71 and 72 of the first step is set to a value (in the present embodiments, about 14 mm relative to the loop size (height) of 22 mm) slightly smaller than the loop size, and the first upper and lower pressing rollers 71 and 72 are moved along the fold created by the folding roller 45 to thereby create the first fold. The first fold is illustrated as a first fold line 100 indicated by a solid arrow in
In the second step, the second upper and lower pressing rollers 73 and 74 as the sheet bundle pressing member, the interval between which is set to a value (in the present embodiments, about 7 mm) slightly smaller than the size of the loop pressed in the first step, and the second upper and lower pressing rollers 73 and 74 are moved along the fold created by the folding roller 45 to thereby create the second fold. The second fold is illustrated as a second fold line 101 positioned on a back side of the first fold line 100 and indicated by a slid arrow in
The third upper and lower pressing rollers 75 and 76 as the sheet bundle pressing member of the final step are brought into pressure contact with each other by the elastic force of the third upper and lower pressing roller pressing springs 93a and 93b. In the final step, unlike the first and second steps, no interval is provided between the third upper and lower pressing rollers 75 and 76 (in the present embodiments, interval is set to 0). Thus, in the final step, the third upper and lower pressing rollers 75 and 76 are moved along the fold while pressing the position corresponding to the thickness of the folded sheet bundle BS that has been pressed in the first and second steps. The fold created by the pressing rollers 70 of the final step is illustrated as a final fold line 102 indicated by a solid arrow in
As described above, the pressing roller pairs 70 having different intervals among the rows are used to buckle the folded sheet bundle BS to create the folds. As a result, a folding direction is directed to a closing direction (line extending in the conveying direction that passes the fold) of the folded sheet bundle BS at the respective positions of the first fold line 100 (indicated by the light line) of the first step, the second fold line 101 (indicated by the light line) of the second step, and the final fold line 102 (indicated by the comparatively dark line) of the final step generated in accordance with the thickness of the folded sheet bundle BS. With this configuration, it is possible to prevent the folded sheet bundle BS from being opened to thereby prevent degradation of aligning property and accumulating property.
[Control Configuration]
Control configuration of the sheet processing device B provided with the thus described sheet pressing device 50 and the image forming device A including the sheet processing device B will be described based on a block diagram of
As described above, in the sheet processing device B of the present invention, the following four modes can be specified: (1) “print-out mode”, (2) “staple-binding mode”, (3) “saddle stitching and folding mode”, and (4) “folded sheet pressing mode”.
The sheet processing device B includes the sheet processing device controller 115 that is made operable in one of the above four modes, a ROM that stores an operation program, and a RAM that stores control data. The sheet processing device controller 115 includes a sheet conveying controller 116 that controls sheet conveyance in the device, a single-sheet punching controller 117 that applies punching, one by one, the sheets by means of a single-sheet punching unit 28, a processing tray controller 118 that performs control of accumulating the sheets on the processing tray 29, and an end face binding controller 119 that binds the end face side of the sheets accumulated in a bundle and discharges the bound sheet bundle.
The saddle stitching or the center-folding of the sheet at about a half position thereof in the sheet conveying direction is controlled by a stacker section controller 120 that accumulates the sheet bundle in the sheet stacker section 35. The stacker section controller 120 uses the stopper 38 or the aligning means 39 that regulates the leading end of the sheets carried in, one by one, to the stacker section 35 to generate an aligned sheet bundle. The sheet processing device controller 115 further includes a saddle stitching controller 121 that controls the saddle stitching stapler 40 to drive a staple or the like to a center portion of the sheet bundle and a sheet folding controller 122 that controls the folding blade 46 to push the saddle-stitched sheet bundle into the folding roller 45 to fold the sheet bundle.
The sheet processing device controller 115 further includes a folded sheet pressing controller 123 that controls the sheet pressing device according to the thus described “folded sheet pressing mode”. The folded sheet bundle BS that has been pressed is discharged and accumulated in the second sheet discharge tray 22 under control of a center-folded sheet discharge controller 124 that controls the folding roller 45 serving also as a bundle conveying roller and the bundle discharge roller 49.
The folded sheet pressing control related especially to the present invention has been described based on the description of the respective mechanisms and using operation state explanatory views of
The present invention in its preferred embodiments provides the following effects.
(1) There is provided, according to the above embodiment, a sheet processing device including a pair of pressing rollers 70 as a pressing member that press a fold of a folded sheet bundle in a thickness direction of the fold and a pressing roller unit 56 as a moving member that moves the pressing roller pair 70 along the fold of the folded sheet bundle, wherein the pressing roller unit 56 supports a plurality of rows of the pressing roller pairs 70 arranged in a moving direction of the pressing roller unit 56, and the pressing roller pairs 70 press the folded sheet bundle with the intervals therebetween in the respective rows reduced stepwise in the moving direction of the pressing roller unit 56.
With this configuration, the first pressing roller pair 70 in the moving direction is moved in a sheet width direction while pressing the folded sheet bundle in the fold thickness direction in a state of being separated from each other to create a fold, and the second pressing roller pair 70 in the moving direction is moved in the sheet width direction while pressing the folded sheet bundle with the interval therebetween reduced to create a new fold, whereby the fold of the folded sheet bundle is directed inward. Thus, the sheet bundle itself is directed to its binding direction, thereby preventing the folded sheet bundle from being opened after the pressing, which allows more sheet bundles to be accumulated.
(2) In the sheet processing device of (1), the pressing roller pair 70 is a pair of rollers capable of being rotated in accordance with the moving direction.
With this configuration, the pressing roller pair 70 can be rotated in the moving direction, so that it can override the fold from a sheet end portion and press the fold without catch to thereby perform smooth sheet pressing operation.
(3) In the sheet processing device of (2), a plurality of rows of the pressing roller pairs 70 are supported by a frame of the pressing roller unit 56, the pressing roller pair 70 (75, 76) of the last row in the moving direction of the pressing roller unit 56 are elastically biased so as to be brought into pressure contact with each other, and the pressing roller pair 70 (73, 74) of the last row but one is position-regulated so as to prevent the interval therebetween from being made smaller than a predetermined interval.
With this configuration, when pressing folded sheet bundle formed by rigid sheets, the pressing roller pair 70 can set the fold by being moved upward with downward movement thereof regulated by an interval regulating member, whereby the fold can be set at different positions.
(4) In the sheet processing device of (3), the plurality of rows of the pressing roller pairs 70 supported by the frame of the pressing roller unit 56 so as to be arranged in the moving direction of the pressing roller unit 56 are configured such that two rollers constituting the pressing roller pair 70 of each row are disposed opposite to each other, with a sheet fold position as a center, at positions substantially equally distant from the sheet fold position.
With this configuration, the pair of pressing rollers 70 equally approach each other in the sheet thickness direction. Thus, the fold lines created by the pair of pressing rollers 70 are formed at positions substantially equally distant from the sheet fold position, whereby a folded booklet having a good appearance can be created.
(5) In the sheet processing device of (4), the movement of the pressing roller unit 56 along the fold of the folded sheet bundle is continued from when the pressing roller pair 70 (71, 72) of the first row in the moving direction of the pressing roller unit 56 overrides one end portion of the folded sheet bundle until when the pressing roller pair 70 (75, 76) of the last row passes through the other end portion of the folded sheet bundle.
With this configuration, the pressing roller unit 56 can create the folds sequentially while being moved by a distance longer than the width of the folded sheet bundle, whereby a folded booklet having improved pressing effect against the fold can be created.
(6) In the sheet processing device of (5), at least three rows of the pressing roller pairs 70 (71 and 72, 73 and 74, 75 and 76) whose interval differs among the rows are arranged.
With this configuration, the three rows of the pressing roller pairs 70 (71 and 72, 73 and 74, 75 and 76) whose intervals in the respective rows are reduced stepwise is used to perform pressing, so that even in a case where a comparatively thick folded sheet bundle formed by, e.g., 20 to 30 sheets is pressed, it is possible to prevent the fold of the folded sheet bundle from being opened, thereby improving the accumulating property and aligning property.
(7) There is provided, according to the above embodiment, a sheet processing device including a stacker section 35 that accumulates sheets as a sheet bundle, a folding roller 45 that folds the accumulated sheet bundle, a pair of pressing rollers 70 that press a fold of the sheet bundle folded by the folding roller 45 in a thickness direction of the fold, and a pressing roller unit 56 with a frame, serving as a moving member and configured to move the pressing roller pair 70 along the fold of the folded sheet bundle, wherein a plurality of rows of the pressing roller pairs 70 are arranged and unitized inside the frame, intervals between the pressing roller pairs of the respective rows that press the folded sheet bundle in a thickness direction of the fold are reduced stepwise in the moving direction of the frame, and the frame is moved in the moving direction thereof to cause the pressing roller pairs of respective rows to press the folded sheet bundle from both sides in the thickness direction of the fold.
With this configuration, there are arranged, inside the frame of the pressing roller unit 56 that is moved along the fold, the plurality of rows of the pressing roller pairs 70 whose intervals in the respective rows are reduced stepwise in the moving direction of the frame, thereby preventing in a stepwise manner the folded sheet bundle from being opened, which suppresses the accumulated folded sheet bundle from being opened. Thus, the accumulating property and aligning property of the folded sheet bundle can be improved. Further, the plurality of rows of the pressing roller pairs 70 whose intervals in the respective rows are reduced stepwise are supported inside the frame, so that effective stepwise sheet pressing can be performed only by a single movement operation in the sheet width direction.
(8) In the sheet processing device of (7), among the plurality of rows of the pressing roller pairs, at least the pressing roller pair 70 (75, 76) of the last row in the moving direction are elastically biased against each other.
With this configuration, the pressing roller pair 70 (75, 76) of the last row are elastically biased against each other, so that the roller pair of the last row is moved along the fold while pressing the fold, thereby enhancing the fold of the folded sheet bundle.
(9) There is provided, according to the second embodiment, a sheet processing device (sheet processing device B) including a pair of pressing rollers 70 as a pressing member that press a fold of a folded sheet bundle in a thickness direction of the fold and a pressing roller unit 56 as a moving member that moves the pressing roller pair 70 along the fold of the folded sheet bundle, wherein a plurality of the pressing roller units 56 are provided, each of the plurality of pressing roller units 56 (56a, 56b, 56c) supports the pressing roller pair 70, intervals between the pressing roller pair 70 supported by the pressing roller unit 56a that is moved first and between the pressing roller pair 70 supported by the pressing roller unit 56a that is moved next are reduced stepwise, and the pressing roller units 56 are sequentially moved along the fold of the folded sheet bundle to press the folded sheet bundle.
With this configuration, the first pressing roller unit 56a in the moving direction is moved in a sheet width direction while pressing the folded sheet bundle in the fold thickness direction in a state where the pair of pressing rollers 70 are separated from each other to create a fold, and the second pressing roller unit 56b in the moving direction is moved in the sheet width direction while pressing the folded sheet bundle with the interval between the pair of pressing rollers 70 supported therein reduced to create a new fold, whereby the fold of the folded sheet bundle is directed inward. Thus, the sheet bundle itself is directed to its binding direction, thereby preventing the folded sheet bundle from being opened after the pressing, which allows more sheet bundles to be accumulated.
(10) In the sheet processing device of (9), the pressing roller pair 70 is a pair of pressing rollers capable of being rotated in accordance with the moving direction, and the pair of pressing rollers 75 and 76 of the last row in the moving direction are elastically brought into pressure contact with each other.
With this configuration, the pressing roller pair 70 can be rotated in the moving direction, so that it can override the fold from a sheet end portion and press the fold without catch to thereby perform smooth sheet pressing operation. Further, the pair of pressing rollers 70 (75, 76) of the last row in the moving direction are elastically biased against each other by springs, so that the roller pair of the last row is moved along the fold while pressing the fold, thereby enhancing the fold of the folded sheet bundle.
(11) There is provided, according to the embodiment, an image forming device A including an image forming means for forming an image on a sheet and a sheet processing device that applies predetermined sheet processing to the image-formed sheet from the image forming means, wherein the sheet processing device is the sheet processing device B described in (1).
With this configuration, there can be provided the image forming device A having the sheet processing device B capable of providing working effects described in the above respective paragraphs.
(12) There is provided, according to the embodiment, a sheet pressing method of a sheet pressing device including a pair of pressing rollers 70 as a pressing member that press a fold of a folded sheet bundle in a thickness direction of the fold and a pressing roller unit 56 as a moving member that moves the pressing roller pair 70 along the fold of the folded sheet bundle, wherein the pressing roller unit 56 supports a plurality of rows of the pressing roller pairs 70 arranged in their moving direction, intervals between the pressing roller pairs 70 of the respective rows are reduced stepwise from first row to the last row in the moving direction, and the pressing roller unit 56 supporting the configured pressing roller pairs are moved with the first pressing roller pair, the interval between which is largest, in front to press the folded sheet bundle.
With this configuration, the sheet bundle itself is directed to its binding direction, thereby preventing the folded sheet bundle from being opened after the pressing, which allows more sheet bundles to be accumulated.
In the description of the effects of the embodiments, reference numerals are given to constituent elements recited in the claims so as to clarify a correspondence relationship between the description of “Detailed Description” and the description of “What is Claimed is”.
Further, it should be appreciated that the present invention is not limited to the present embodiment, and various modifications may be made thereto. Further, all technical matters included in the technical ideas set forth in the claims should be covered by the present invention. While the invention has been described based on a preferred embodiment, those skilled in the art can realize various substitutions, corrections, modifications, or improvements may be made from the content disclosed in the specification by a person skilled in the art, which are included in the scope defined by the appended claims.
This application is based upon and claims the benefit of priority from prior Japanese Patent Applications No. 2014-133796 and No. 2014-133798, both filed Jun. 30, 2014, the entire contents of which are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2014-133796 | Jun 2014 | JP | national |
2014-133798 | Jun 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7431274 | Kushida | Oct 2008 | B2 |
8201815 | Sasahara | Jun 2012 | B2 |
20090010737 | Li | Jan 2009 | A1 |
20110176891 | Urano | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
4217640 | Feb 2009 | JP |
4514217 | Jul 2010 | JP |
2012-201462 | Oct 2012 | JP |
2014-076903 | May 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20150375958 A1 | Dec 2015 | US |