This application is based upon and claims the benefit of priority from the prior U.S. patent application Nos. 61/368,609, filed on Jul. 28, 2010, 61/368,611, filed on Jul. 28, 2010, and 61/372,437, filed on Aug. 10, 2010, the entire contents of which are incorporated herein by reference.
This application is also based upon and claims the benefit of priority from Japanese Patent Application No. 2011-150011, filed on Jul. 6, 2011, the entire contents of which are incorporated herein by reference.
Exemplary embodiments described herein relate to a sheet processing device provided with processing capabilities, such as sorting, stapling and reinforcing functions.
In the sheet processing device provided with processing capabilities, such as sorting, a stapling, a reinforcing of the folded sheet, the sheet processing device which discharges a sheet adjusting sheet and maintaining matching states when processing a sheet is known. However, when conveying a sheet, in the usual matching plate, there is a fault from which the matching states of a sheet shift easily.
In general, according to one embodiment, there is provided with a sheet processing device including: a jogger fence configured to carry out a crosswise direction alignment to a stack of image formed sheets ejected from an image forming apparatus; a rear end fence acting as a lengthwise reference edge; a stapling device configured to staple the aligned sheet stack; a discharge belt configured to move the stapled sheet stack to a sheet ejection tray; and a controller to control movement of the jogger fence during the sheet stack being moved by the discharge belt so as to move the jogger fence more than once between a position where the jogger fence does not contact the edge of the sheet stack and a position where the jogger fence pressing contact the edge of the sheet stack.
With reference to an accompanying drawing, the embodiment of a sheet processing device is described below.
(A first embodiment) A first embodiment of the present invention is a sheet processing device wherein a jogger fence performs movements to a retreating position and a sheet pressed position at the time of sheet discharge.
As shown in
Sheets sequentially brought to the staple tray F via the paths A and D are positioned one by one, stapled or otherwise processed, and then steered by a guide plate 54 and a movable guide 55 to either one of the path C and another processing tray G. The processing tray G folds or otherwise processes the sheets and, in this sense, will sometimes be referred to as a fold tray hereinafter. The sheets folded by the fold tray G are further strongly folded by a reinforce roller 400 and then guided to a lower tray 203 via a path H. The path D includes a path selector 17 constantly biased to a position shown in FIG. 1 by a light-load spring not shown. An arrangement is made such that after the trailing edge of a sheet has moved away from the path selector 17, among rollers 9 and 10 and a staple outlet roller 11, at least the roller 9 and a re-feed roller 8 are rotated in the reverse direction to convey the trailing edge of the sheet to a pre-stacking portion E and cause the sheet to stay there. In this case, the sheet can be conveyed together with the next sheet superposed thereon. Such an operation may be repeated to convey two or more sheets together.
On the carrying path A merging into the carrying paths B, C and D, there are sequentially arranged an inlet sensor 301 responsive to a sheet coming into the finisher PD, an inlet roller pair 1, the punch unit 100, a waste hopper 101, roller pair 2, and path selectors 15 and 16. The path selectors 15 and 16 are held with springs at the state as shown in
In the illustrative embodiment, the sheet processing device PD is capable of selectively effecting punching (punch unit 100), jogging and edge stapling (jogger fence 53 and edge stapler S1), jogging and center stapling (jogger fence 53 and center stapler S2), sorting (shift tray 202) or folding (folding plate 74 and fold rollers 81 and reinforce roller 400), as desired.
A shift tray outlet section I is located at the most downstream position of the sheet processing device PD and includes a shift outlet roller pair 6, a return roller 13, a sheet surface sensor 330, and the shift tray 202. The shift tray outlet section I additionally includes a shifting mechanism J shown in
As shown in
As shown in
When the outputs of the sensors 330a and 330b indicate that sheets are stacked on the shift tray 202 to a pre-selected height, the tray elevation motor 168 is driven to lower the shift tray 202 by a pre-selected amount. The top of the sheet stack on the shift tray 202 is therefore maintained at a substantially constant height.
As shown in
When a stapled sheet stack is to be driven out to the shift tray 202, the guide plate 33 is lifted and then lowered at a pre-selected timing, which is determined on the basis of the output of the shift sensor 303. The stop position is determined in response to the detection signal of the guide plate sensor 331 and driven by a guide plate motor 167. A guide plate motor 167 drives the guide plate 33 in such a manner in accordance with the ON/OFF state of a limit switch 332.
Now, a construction of staple tray F for stapling will be described.
As shown in
As shown in
A processing mechanism will be described hereinafter. As shown in
As shown in
A discharge belt 52 with a hook 52a immediately conveys the stapled sheet stack to the shift outlet roller pair 6. The power of the jogger motor 158 capable of bi-directional rotation is transmitted via the timing belt 156. Thereby, reciprocation moving of the jogger fence 53 is carried out to a sheet crosswise direction, and positioning of a crosswise direction (direction intersecting perpendicularly with a sheet conveying direction, and is sometimes referred to as a direction of sheet width) is performed by the jogger fence 53. The jogger fence 53 performs horizontal positioning of sheet for one time or a multiple-times, while the hook 52a is conveying the sheet.
The displacement of a jogger fence is determined by sheet size. Horizontal positioning is performed by one time or repeating two or more times in the operation which the jogger fence 53 moves to a position non-contacting with the sheet, and a position contacting with the sheet which is deformed with sheet sizes.
The number of times of the positioning of the crosswise direction by this jogger fence 53 is changed by size, stapling number of sheets, etc. of a sheet. When sheet size is large, the number of times of horizontal positioning is increased. Since a part of sheet stack shifts easily similarly when there are many sheets to be stapled, horizontal positioning is increased. Thus, according to the control set up beforehand, the jogger fence 53 operates and horizontal positioning is performed.
Further, the horizontal positioning is changed in accordance with one-place stapling or two-place stapling. In the case of one-place stapling, since a displacement becomes large easily during conveyance, horizontal positioning is increased.
Horizontal positioning can also be set up at the control panel in the image forming device PR. An operator can perform a setting excluding the horizontal positioning during sheet discharge. While it is also possible to arbitrarily change the number of times of horizontal positioning.
Thus, the stapled sheet stack is discharged to the shift tray 202 held at a receiving position, by being carried out in horizontal positioning during movement.
Now, a second embodiment of the sheet processing device will be described. The sheet which the stapling completed at the time of discharge of a sheet is sent to the shift outlet roller pair 6 with the discharge belt 52 provided with the hook 52a like the first embodiment. Under the present circumstances, the power of the jogger motor 158 in which bi-directional rotation is possible is transmitted via the timing belt 156, and it is set so that the space of the jogger fence 53 may become a position a little narrower than the width of a sheet. Thereby, some corrugation is given to the sheet stack conveyed as shown in
Here, the position of the jogger fence 53 is determined by the size of a sheet stack. The position of the jogger fence 53 may be changed according to the kind of sheet. For example, in the case of a limp sheet, compared with the regular sheet of the same size, the space of the jogger fence 53 is narrowed like a thin sheet. By such operation, a sheet stack is conveyed without shifting to a crosswise direction, then compatibility is improved.
Now, a third embodiment will be described. The sheet which the stapling completed at the time of discharge of a sheet is sent to the shift outlet roller pair 6 with the discharge belt 52 provided with the hook 52a like the first embodiment. The stapling tray F is formed by raw material in which sliding aspect of surface is good and has elasticity. At the time of discharge, abutment members 1515 are pushed out to the side opposite to the sheet carrying surface of the stapling tray F by solenoids 1514 which move the abutment members 1515. Then, according to the abutment member pressing against the stapling tray 4, the shape of this stapling tray F is deformed, as shown in
Now, a case where sheets is stapled at the center is explained as a fourth embodiment. As shown in
There are also shown in
The folding plate 74 is formed with elongate slots 74a each being movably received in one of pins 64c studded on each of the front and rear side walls 64a and 64b. A pin 74b studded on the folding plate 74 is movably received in an elongate slot 76b formed in a link arm 76. The link arm 76 is angularly movable about a fulcrum 76a, causing the folding plate 74 to move in the right-and-left direction as viewed in
A folding plate motor 166 causes the folding plate cam 75 to rotate in a direction indicated by an arrow in
Now, Next, a reinforce roller unit will be explained. As shown in
As shown in the front elevational view of
The support mechanism of the reinforce roller 409 includes a slider or support member 407 slidable on a guide member 405 in a pre-selected direction, an upper guide plate 415, and a coil spring or biasing means 411. The upper guide plate 415 extends to a position above the slider 407 and remote from the reinforce roller 409 and prevents the reinforce roller 409 from tilting while preventing the guide member 405 from bending. The coil spring 411 constantly biases the reinforce roller 407 toward the folding direction, i.e., downward as viewed in
Rotation of the pulse motor 401 gets across to the support member 407 combined with the timing belt 403 with the timing belt 403 stretched between the driving pulley 402 and the driven pulley 404. The move supporter 407 moves in sliding in the thrust direction of the guide member 405 by being guided by the guide member 405. A bend-preventing member 406 is positioned between the slider 407 and the upper guide plate 415 and implemented as a roller rotatably supported by the slider 407. The bend-preventing member 406 is therefore movable integrally with the slider 407 in the axial direction of the guide member 405. The reinforce roller 409 is positioned between the slider 407 and a lower guide plate 416. A friction member 410 is fitted on the circumference of the reinforce roller 409. The reinforce roller 409 reciprocate.
The reinforce roller 409 is supported by a roller support member 408, which is supported in such a manner as to be movable in the up-and-down direction in sliding contact with the slider 407. The roller support member 408 is pressurized toward the lower guide plate 416 by the coil spring 411 from the slider 407. In this configuration, the reinforce roller 409, when sliding on the guide member 405 together with the slider 407, is constantly pressed toward the lower guide plate 416 by the coil spring 411 while being movable in the up-and-down direction. Position sensors 412 and 413 are positioned at opposite sides in the direction of thrust of the guide member 405. When a detection subjective plate 417 contained in the slider 407 locates on positions of the front position sensor 412 and the rear position sensor 413, the front and rear position sensors 412, 413 detect the slider 407. The sheet stack sensor 414 detects the sheet stack conveyed to the reinforce roller unit 400.
The rear position sensor 413 detects the home position of the reinforce roller 409. More specifically, the reinforce roller 409 is moved from the position of the rear position sensor 413 toward the position of the position sensor 412 after a sheet stack has been stopped at the pre-selected position. At this instant, if the position sensor 412 does not sense the reinforce roller 409 even after a pre-selected number of pulses input to the pulse motor 402 have been counted, then it is determined that an error, i.e., the locking of the mechanism, the stop of the reinforce roller 409 ascribable to a short drive torque or the step-out of the motor 402 has occurred. A paper jam means that the apparatus falls into a state unable to convey sheet by the reinforce roller 409 abnormally stopped during the reinforcing operation by the reinforce roller 409.
When any abnormity has been detected, the pulse motor 401 is driven in the reverse direction to return the reinforce roller 409 toward the position of the rear position sensor 413. At this time, the occurrence of the sheet jam is displayed on an indicator.
Signals from, for example, the inlet sensor 301, the shift delivery sensor 303, the space detecting sensor 330, the delivery guide plate open-close sensor 331, the sheet presence or absence sensor 310, the discharge belt home position sensor 311, the stapler move home position sensor 312, the staple exchange position sensor 313, the folding plate HP sensor 325, the front position sensor 412, the rear position sensor 413 and the sheet stack sensor 414 are input to a CPU 1501.
CPU 1501 performs the control and the abnormity detection control of the sheet processing device PD, and the indication control for the indicator 1507 according to the program written in the memory 1506. According to the control output from the CPU 1501, a CPU provided in the image forming apparatus PR controls the indication control for the control panel.
Hereafter, a sequence of actions from the incidence of occurring abnormity will be described. Even if the rear position sensor 413 is not set to ON within a specified time after the pulse motor 401 has been driven and the reinforce roller 409 has been moved toward the rear position sensor 413, an occurrence of sheet jam and thus occurrence of abnormity were considered. At this time, the occurrence of sheet jam is displayed on the image forming device PR. Furthermore, the occurrence of sheet jam is displayed on the indicator 1507 of the sheet processing device PD.
According to the above construction, in the occurrence of sheet jam the reinforce roller 409 can be moved to an appropriate location, as the situation demands. That is, when the home position of the reinforce roller 409 is close to the end of sheet which is to be carried out the folded sheet reinforcing operation, and where the position of the reinforce roller 409 is inadequate to release the sheet jam, the reinforce roller 409 can be moved to an adequate position for releasing he sheet jam. When the reinforce roller 409 is located closer to the end of sheet to be carried out the folded sheet reinforcing operation for giving priority to shortening a processing time, the reinforce roller 409 can be moved to an evacuation position capable of taking enough operation at the time of occurring the sheet jam. It will be helpful that the folded sheet reinforcing operation is carried out in a low speed drive with a large torque from beginning. Furthermore, it is particularly helpful that when the folded sheet reinforcing operation is finished with less slow down steps in return operation, the home position of the reinforce roller 409 is located closer to the end of sheet to be carried out the folded sheet reinforcing operation as much as possible.
The present invention can be practiced by combining the above-described first and second embodiments, not only for practicing in individual embodiment.
The above-described embodiments are presented as some examples. Therefore, they not intend to specifically limit the scope of the present invention. These embodiments can be carried out in other various forms. Therefore, the present invention can be practiced by with various change, such as an abbreviation, replacement, modification, within a range not deviating from the subject-matter of an invention. These embodiment and their modifications are included in the scope of invention together with the inventions as described in the claims as attached herewith.
Number | Date | Country | Kind |
---|---|---|---|
P2011-150011 | Jul 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5762328 | Yamada et al. | Jun 1998 | A |
6698744 | Yamada et al. | Mar 2004 | B2 |
7946569 | Suzuki et al. | May 2011 | B2 |
8226079 | Ozawa | Jul 2012 | B2 |
20080067730 | Suzuki et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
3732812 | Jan 2006 | JP |
3746472 | Feb 2006 | JP |
2007140415 | Jun 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20120025441 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61368609 | Jul 2010 | US | |
61368611 | Jul 2010 | US | |
61372437 | Aug 2010 | US |