The following applications, the disclosures of each being totally incorporated herein by reference are mentioned:
U.S. Provisional Application Ser. No. 60/631,651, filed Nov. 30, 2004, entitled “TIGHTLY INTEGRATED PARALLEL PRINTING ARCHITECTURE MAKING USE OF COMBINED COLOR AND MONOCHROME ENGINES,” by David G. Anderson, et al.;
U.S. Provisional Application Ser. No. 60/631,656, filed Nov. 30, 2004, entitled “MULTI-PURPOSE MEDIA TRANSPORT HAVING INTEGRAL IMAGE QUALITY SENSING CAPABILITY,” by Steven R. Moore;
U.S. Provisional Patent Application Ser. No. 60/631,918, filed Nov. 30, 2004, entitled “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE,” by David G. Anderson et al.;
U.S. Provisional Patent Application Ser. No. 60/631,921, filed Nov. 30, 2004, entitled “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE,” by David G. Anderson et al.;
U.S. application Ser. No. 10/761,522, filed Jan. 21, 2004, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 10/785,211, filed Feb. 24, 2004, entitled “UNIVERSAL FLEXIBLE PLURAL PRINTER TO PLURAL FINISHER SHEET INTEGRATION SYSTEM,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/860,195, filed Aug. 23, 2004, entitled “UNIVERSAL FLEXIBLE PLURAL PRINTER TO PLURAL FINISHER SHEET INTEGRATION SYSTEM,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/881,619, filed Jun. 30, 2004, entitled “FLEXIBLE PAPER PATH USING MULTIDIRECTIONAL PATH MODULES,” by Daniel G. Bobrow;
U.S. application Ser. No. 10/917,676, filed Aug. 13, 2004, entitled “MULTIPLE OBJECT SOURCES CONTROLLED AND/OR SELECTED BASED ON A COMMON SENSOR,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/917,768, filed Aug. 13, 2004, entitled “PARALLEL PRINTING ARCHITECTURE CONSISTING OF CONTAINERIZED IMAGE MARKING ENGINES AND MEDIA FEEDER MODULES,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/924,106, filed Aug. 23, 2004, for PRINTING SYSTEM WITH HORIZONTAL HIGHWAY AND SINGLE PASS DUPLEX by Lofthus, et al.;
U.S. application Ser. No. 10/924,113, filed Aug. 23, 2004, entitled “PRINTING SYSTEM WITH INVERTER DISPOSED FOR MEDIA VELOCITY BUFFERING AND REGISTRATION,” by Joannes N. M. deJong, et al.;
U.S. application Ser. No. 10/924,458, filed Aug. 23, 2004 for PRINT SEQUENCE SCHEDULING FOR RELIABILITY by Robert M. Lofthus, et al.;
U.S. patent application Ser. No. 10/924,459, filed Aug. 23, 2004, entitled “PARALLEL PRINTING ARCHITECTURE USING IMAGE MARKING DEVICE MODULES,” by Barry P. Mandel, et al;
U.S. patent application Ser. No. 10/933,556, filed Sep. 3, 2004, entitled “SUBSTRATE INVERTER SYSTEMS AND METHODS,” by Stan A. Spencer, et al.
U.S. patent application Ser. No. 10/953,953, filed Sep. 29, 2004, entitled “CUSTOMIZED SET POINT CONTROL FOR OUTPUT STABILITY IN A TIPP ARCHITECTURE,” by Charles A. Radulski et al.;
U.S. application Ser. No. 10/999,326, filed Nov. 30, 2004, entitled “SEMI-AUTOMATIC IMAGE QUALITY ADJUSTMENT FOR MULTIPLE MARKING ENGINE SYSTEMS,” by Robert E. Grace, et al.;
U.S. patent application Ser. No. 10/999,450, filed Nov. 30, 2004, entitled “ADDRESSABLE FUSING FOR AN INTEGRATED PRINTING SYSTEM,” by Robert M. Lofthus, et al.;
U.S. patent application Ser. No. 11/000,158, filed Nov. 30, 2004, entitled “GLOSSING SYSTEM FOR USE IN A TIPP ARCHITECTURE,” by Bryan J. Roof;
U.S. patent application Ser. No. 11/000,168, filed Nov. 30, 2004, entitled “ADDRESSABLE FUSING AND HEATING METHODS AND APPARATUS,” by David K. Biegelsen, et al.;
U.S. patent application Ser. No. 11/000,258, filed Nov. 30, 2004, entitled “GLOSSING SYSTEM FOR USE IN A TIPP ARCHITECTURE,” by Bryan J. Roof;
U.S. application Ser. No. 11/001,890, filed Dec. 2, 2004, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 11/002,528, filed Dec. 2, 2004, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 11/051,817, filed Feb. 4, 2005, entitled “PRINTING SYSTEMS,” by Steven R. Moore, et al.;
U.S. application Ser. No. 11/069,020, filed Feb. 28, 2005, entitled “PRINTING SYSTEMS,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 11/070,681, filed Mar. 2, 2005, entitled “GRAY BALANCE FOR A PRINTING SYSTEM OF MULTIPLE MARKING ENGINES,” by R. Enrique Viturro, et al.; and,
U.S. application Ser. No. 11/081,473, filed Mar. 16, 2005, entitled “MULTI-PURPOSE MEDIA TRANSPORT HAVING INTEGRAL IMAGE QUALITY SENSING CAPABILITY,” by Steven R. Moore; and,
U.S. application Ser. No. 11/090,498, filed Mar. 25, 2005, entitled “PRINTING SYSTEM INVERTER WITH RETURN/BYPASS PAPER PATH”, by Robert A. Clark, et al.
The present exemplary embodiments relate generally to the deskewing and side registering of a sheet moving in forward and reverse process directions through an inverter, and more particularly to removing a random skew and a lateral misregistration while the sheet is inverting. The present exemplary embodiments relate to media (e.g., document or paper) handling systems and systems for printing thereon and is especially applicable for a printing system comprising a plurality of associated xerographic devices or marking engines.
Printing systems including a plurality of marking engines are known and have been generally referred to as tandem engine printers or cluster printing systems. See U.S. Pat. No. 5,568,246. Such systems especially facilitate expeditious duplex printing (both sides of a document are printed) with the first side of a document being printed by one of the marking engines and the other side of the document being printed by another so that parallel printing of sequential documents can occur. The process path for the document usually requires an inversion of the document (the leading edge is reversed to become the trailing edge) to facilitate printing on the back side of the document. Inverter systems are well known and essentially comprise an arrangement of nip wheels or rollers which receive the document by extracting it from a main process path, then direct it back on to the process path after a 180° flip so that what had been the trailing edge of the document now leaves the inverter as the leading edge along the main process path. Inverters are thus fairly simple in their functional result; however, complexities occur as the printing system is required to handle different sizes and types of documents and where the marking engines themselves are arranged in a parallel printing system to effect different types of printing, e.g., black only printing versus color or custom color printing.
As a document is transported along its process path through the system, the document's precise position must be known and controlled. The adjustment of the documents to desired positions for accurate printing is generally referred to as a registering process and the apparatus used to achieve the process are known as registration systems. See U.S. Pat. No. 4,971,304, which is incorporated herein by reference. Precision registration systems generally comprise nip wheels in combination with document position sensors whereby the position information is used for feedback control of the nip wheels to adjust the document to the desired position. It can be appreciated that many registration systems require some release mechanism from the media handling path upstream of the nip registration wheels so that the wheels can freely effect whatever adjustment is desired. This requires a relatively long and expensive upstream paper handling path. In parallel printing systems using multiple marking engines, the required registration systems also adds to the overall media path length. As the number of marking engines increases, there is a corresponding increase in the associated inverting and registering systems. As these systems may be disposed along the main process path, the machine size and paper path reliability are inversely affected by the increased length of the paper path required to effectively release the documents for registration. Lateral paper registration requirements for containerized marking engines are challenging due to the need to accommodate both edge-registered and center-registered marking engines.
Another disadvantageous complexity especially occurring in parallel printing systems is the required change in the velocity of the media/document as it is transported through the printing system. As the document is transported through feeding, marking, and finishing components of a parallel printing system, the process speed along the media path can vary to a relatively high speed for transport along a highway path, but must necessarily be slowed for some operations, such as entering the transfer/marking system apparatus. Effective apparatus for buffering such required velocity changes also requires an increase in the main process path to accommodate document acceleration and deceleration between the different speed sections of the process path.
Especially for parallel printing systems, architectural innovations which effectively shorten the media process path, enhance the process path reliability and reduce overall machine size are highly desired.
The proposed development comprises an inverter disposed in a parallel printing system for accomplishing necessary document handling functions above and beyond the mere document inversion function. The combined functions also include deskewing, cross-process translating, and process translating while inverting a document for yielding a more compact and cost effective media path. A printing system is provided which comprises a marking engine and a document transport path highway. The system further provides an inverter including a registration system having a pair of independently driven reversing inverter rollers. The registration system includes a translating frame for translating the reversing inverter rollers wherein the inverter rollers are differentially driven while being translated by the translating frame for inverting and registering a document along a media path.
A plural marking engine system is provided including inverter assemblies associated with ones of the marking engines. The inverter assemblies include independent variable speed process direction motors associated with independently driven reversing nip rollers for inverting and deskewing media through the inverter assembly at selectively variable speeds, and a translation motor associated with a translating frame supporting the independently driven reversing nip rollers for selectively and simultaneously side translating the reversing nip rollers.
Additionally, the exemplary embodiments provide an inverter apparatus associated with a marking engine or xerographic device for inverting a document for transport along a media path. The apparatus comprises at least two nip drive rollers for grasping and inverting the document, variable speed process direction motors for differentially driving separate ones of the nip drive rollers at variable speeds, and sensors for sensing if the document is skewed and laterally offset during ingress of the document to the inverter and during egress of the document from the inverter.
Further, an inverter apparatus associated with a marking engine for inverting a document along a media path is provided and comprises an inverter frame, at least two nip drive rollers and at least two idle rollers opposed thereto for grasping and inverting the document, variable speed motors for differentially driving separate ones of the nip drive rollers at variable speeds, a translating frame supporting the nip drive rollers and the idle rollers, and a translating motor associated with the translating frame for selectively laterally shifting the drive rollers and idle rollers relative to the inverter frame.
The exemplary embodiments also provide a method of processing a document for transport through a printing system for enhancing document control and reducing transport path distance. The printing system includes an inverter assembly comprising variable speed drive motors associated with nip drive rollers for grasping the document, and a marking engine. The method comprises transporting the document into the inverter assembly at a first speed, sensing deskew of the document with at least two sensors, sensing lateral registration of the document with a third sensor, inverting the document in the inverter assembly, and registering the document within the inverter assembly wherein the registering comprises simultaneously cross-process translating and deskewing of the document in a forward direction and in a reverse direction.
The velocity buffering occurs when a document is received from a main highway path when the document is traveling at a higher speed and then transported into a marking engine at a slower speed. Thus, the ingress to the inverter is at one speed, while the egress can be at a second speed. Such an operating function would normally be accomplished at the entrance to the image transfer zone of the marking component. Alternatively, the inverter could perform an opposite velocity buffering function, the ingress could be at a low speed, while the egress would be at a higher speed. Such an operating function could normally be expected to occur at the exit of the marking engine.
The embodiments comprise the method of processing the document for transport through a printing system for enhancing document control and reducing transport path distance. The printing system includes an inverter assembly comprising variable speed drive motors and a translating motor associated with nip drive rollers for grasping the document. The system also includes a marking engine. The method comprises transporting a document into the inverter assembly at a first speed, inverting the document in the inverter assembly, and transporting the document out of the inverter assembly in a second speed whereby a variance between the first and second speeds is buffered by the inverter assembly.
The exemplary embodiments provide the combined and simultaneous processing functions of inversion, registration and velocity buffering for effectively shortening the document process path through a printing system, thereby reducing the overall machine size and enhancing the process path reliability.
With reference to the drawings wherein the showings are for purposes of illustrating alternative embodiments and not for limiting same,
The marking engines 12, 14 shown in
With reference to
Idler rollers 72, 74 can be connected by a rod 75. A solenoidal release mechanism 92 can simultaneously release the nip idler rollers 72, 74 from grasping engagement with the drive rollers 68, 70 by actuating rod 75 to enable overlap of sheets during the inversion operation for higher speed processing. A stationary frame 100 supports a substantial portion of the inverter assembly 50 against process direction movement, but allows a process direction motor as mounted in a translating carriage frame 102 to be moved in a cross-process direction for adjusting the position of a document within the inverter assembly to accomplish the registering function. More particularly, a translating drive motor (not shown) mounted on the stationary frame 100 is connected to the translating carriage frame 102 via belt drive 104 for translating nip drive rollers 68, 70, nip idler rollers 72, 74 and the other elements mounted on the translating frame 102 in a cross-process direction by shifting guide or translating rods 108, 110 of the translating frame 102. In other words, as the translating motor moves the translating frame 102, the guide rods 108, 110 will correspondingly translate relative to the stationary frame 100 in a cross-process directional manner shown by arrow “Y”. Translating rod 110 can include a round rack 111 which is driven by belt drive 104. Rod 111 translates over fixed rod 112. Motor shafts 82, 86 include external splines 83, 87 upon which drive rolls 68, 70 translate. The drive rolls 68, 70 are connected to translating rod 108 by mounts 113, 114. Mounts 113, 114 include hollow shafts 115, 116 which can translate over another pair of fixed rods 117, 118 when translating rod 108 is driven by a lateral shift rack 119 which can be actuated by belt drive 104.
It is to be appreciated that the entire translating portion shown as shown in
Referring now to
Paper paths P1, P2 can be provided with a series of at least three sensors, 130, 132, 134. Sensors 130 and 132 are suitably spaced on a line L arranged generally perpendicularly to the path of paper sheet travel (x-or process direction) along paper paths P1, P2. In one embodiment the spacing Sx can be about 9 inches apart, and each spaced approximately equidistant from a paper path centerline C. Sensor 134 is located at a position where one side edge 140 of a paper sheet S will pass, for detection by the sensor. In one embodiment, this may be slightly downstream from sensors 130 and 132, between 10 mm and 70 mm further away from a line M connecting nip roll pairs 64 and 66. In one working example, sensor 134 was spaced 40 mm downstream from line M. It will be appreciated that what is necessary in the positioning of sensor 134 is that the position allows detection of the sheet side edge 140 subsequent to, or simultaneous with, skew detection, and accordingly, upstream or downstream positions are well within the scope of the exemplary embodiments. Sensors 130 and 132 may be advantageously comprised of reflective optical sensors which will produce a signal upon occlusion by paper sheets or the like. Other dimensions and positions of the sensors and nip roll pairs with respect to each other are possible. The above are given as examples only.
As sheet S enters the deskewing arrangement and is advanced through nip roll pairs 64, 66, lead edge E occludes sensors 130 and 132. Which sensor is occluded first depends on the direction of skew of the sheet, and it is entirely possible that the sheet will occlude both sensors 130 and 132 substantially simultaneously, thereby indicating no skew in the sheet. In either event, on occlusion, the sensors 130, 132 pass a signal to a controller system as will be described.
It is to be appreciated that a control system suitable for use in the exemplary embodiments is used in conjunction with the drive motors and sensors. A controller controls operations of the reproduction machine, or a portion thereof, as is well known in the art of reproduction machine control, and may be comprised of a microprocessor capable of executing control instruction in accordance with a predetermined sequence, and subject to sensed parameters, and producing a controlling output in response thereto. For the exemplary embodiments, an Intel 8051 microcontroller is a satisfactory microprocessor for control of, for example, a sheet registration subsystem of a reproduction machine. Other alternatives are, of course, available.
Sensors 130, 132, and 134 provide control signals to the control system to provide sensing information, from which information, operation of the driving rollers 68 and 70 will be controlled. Additionally, the controller drives the stepper motors 80 and 84 in accordance with the required movement and rotational velocity of driving rollers 64 and 66. In one typical example, stepper motors 80 and 84 are advantageously driven in a halfstep mode, although full step or microstep modes of operation could be used. Motor revolutions can thus be divided into a large number of halfsteps, each halfstep providing an exact increment of rotation movement of the motor shafts 82 and 86, and thus the driving rollers 68 and 70. In accordance with this scheme, a pair of motor driver boards (not shown) provide a pulse train to incrementally drive motors 80 and 84.
With reference to
N=D/K (1)
where,
Because K and Sx are constants for a particular registration subsystem, a sufficient measure of the skew angle of the sheet as it enters the registration and deskewing arrangement is simply N, the number of motor halfsteps taken between occlusion of sensor 130 and sensor 132, while the motors are driven non-differentially.
With the skew angle a of the sheet known, the sheet is rotated in a selected direction, for example clockwise, looking down on
After skew correction, the sheet is driven non-differentially by the motors 80 and 84. In one embodiment, a fourth sensor (not shown) can be provided downstream from the deskewing arrangement along paper path P1. The time of occlusion of this sensor is sensed with respect to a machine norm, or the status of other machine processes, such as the position of the latent image on the photoreceptor, with respect to the transfer station. Knowing this comparison, the non-differential driving velocity of motors 80 and 84 may be increased or decreased to appropriately register the sheet with a machine operation in the X-direction. It will, of course, be appreciated that this information is also derivable from already known information, i.e. the time of occlusion of 130, 132, and 134, as well as the driving velocities of the motors acting on the sheet.
In still another embodiment, the deskewing may be done over a length of paper path. At particularly high sheet speeds, the paper may not be engaged with a the nip pair set long enough to correct for the initial skew and side misregistration, and then register the sheet in the process direction of the sheet. Accordingly, it is well within the scope of the exemplary embodiments to distribute skew correction and side registration at one set of nip roll pairs and to accomplish process direction registration at a subsequent set of nip roll pairs along paper path P1 and P2.
With reference again to
With reference to
The subject embodiments enable very high registration latitudes (deskew, top edge registration and lead edge registration), since simultaneous corrections can be made while a sheet both enters and exits the inverter assembly. By the nature of the inversion process, sheets entering the inverter assemblies are registered using the lead edge of the sheet (the lead edge becomes the trailing edge when it exits) to correct for any feeding/transporting registration errors. The removal of skew and lateral registration errors could be done while the sheet enters and exits the inverter, or the primary errors could be removed during the entrance phase and additional top edge and skew corrections could be made as the sheet exits the inverter (to correct for cut sheets and trailing edge/leading edge registration induced errors). Such a capability puts less stringent registration requirements on the feeders and other transports and thereby lowers overall system costs and enhances system reliability and robustness.
The exemplary embodiments have been described with reference to the specific embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiments be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4579466 | Sato | Apr 1986 | A |
4587532 | Asano | May 1986 | A |
4836119 | Siraco | Jun 1989 | A |
4971304 | Lofthus | Nov 1990 | A |
5072923 | Coy | Dec 1991 | A |
5080340 | Hacknauer | Jan 1992 | A |
5090683 | Kamath et al. | Feb 1992 | A |
5095342 | Farrell | Mar 1992 | A |
5159395 | Farrell et al. | Oct 1992 | A |
5162857 | Higeta et al. | Nov 1992 | A |
5208640 | Horie | May 1993 | A |
5272511 | Conrad | Dec 1993 | A |
5326093 | Sollitt | Jul 1994 | A |
5382013 | Walsh | Jan 1995 | A |
5389969 | Suzuki | Feb 1995 | A |
5435544 | Mandel | Jul 1995 | A |
5473419 | Russel et al. | Dec 1995 | A |
5504568 | Saraswat | Apr 1996 | A |
5525031 | Fox | Jun 1996 | A |
5557367 | Yang | Sep 1996 | A |
5568246 | Keller | Oct 1996 | A |
5570172 | Acquaviva | Oct 1996 | A |
5590872 | Oominami et al. | Jan 1997 | A |
5596416 | Barry | Jan 1997 | A |
5629762 | Mahoney et al. | May 1997 | A |
5710968 | Clark | Jan 1998 | A |
5778377 | Marlin | Jul 1998 | A |
5884910 | Mandel | Mar 1999 | A |
5995721 | Rourke | Nov 1999 | A |
6032949 | Ando | Mar 2000 | A |
6059284 | Wolf et al. | May 2000 | A |
6125248 | Moser | Sep 2000 | A |
6241242 | Munro | Jun 2001 | B1 |
6297886 | Cornell | Oct 2001 | B1 |
6384918 | Hubble, III | May 2002 | B1 |
6450711 | Conrow | Sep 2002 | B1 |
6476376 | Biegelsen et al. | Nov 2002 | B1 |
6476923 | Cornell | Nov 2002 | B1 |
6493098 | Cornell | Dec 2002 | B1 |
6537910 | Burke | Mar 2003 | B1 |
6550762 | Stoll | Apr 2003 | B2 |
6554276 | Jackson | Apr 2003 | B2 |
6577925 | Fromherz | Jun 2003 | B1 |
6607320 | Bobrow | Aug 2003 | B2 |
6608988 | Conrow | Aug 2003 | B2 |
6612566 | Stoll | Sep 2003 | B2 |
6621576 | Tandon | Sep 2003 | B2 |
6633382 | Hubble, III | Oct 2003 | B2 |
6639669 | Hubble, III | Oct 2003 | B2 |
6779791 | Kawamura et al. | Aug 2004 | B2 |
6805347 | Kuramoto | Oct 2004 | B2 |
6819906 | Herrmann | Nov 2004 | B1 |
6988725 | Rapkin | Jan 2006 | B2 |
7024152 | Lofthus et al. | Apr 2006 | B2 |
7123873 | deJong et al. | Oct 2006 | B2 |
20020078012 | Ryan | Jun 2002 | A1 |
20020103559 | Gartstein | Aug 2002 | A1 |
20030077095 | Conrow | Apr 2003 | A1 |
20040085561 | Fromherz | May 2004 | A1 |
20040085562 | Fromherz | May 2004 | A1 |
20040088207 | Fromherz | May 2004 | A1 |
20040150156 | Fromherz et al. | Aug 2004 | A1 |
20040150158 | Biegelsen | Aug 2004 | A1 |
20040153983 | McMillan | Aug 2004 | A1 |
20040216002 | Fromherz | Oct 2004 | A1 |
20040225391 | Fromherz | Nov 2004 | A1 |
20040225394 | Fromherz | Nov 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060214364 A1 | Sep 2006 | US |