The present invention relates generally to printing mechanisms and more particularly to a sheet separator for a printing mechanism.
Sheet feeding assemblies engage and remove sheets of paper or other media from a stack and feed the sheets along a path to a printing zone, copying zone, scanning zone or the like.
During operation, a sheet picker, usually a small roller having a high friction rubber circumference, engages and removes the uppermost sheet from a stack and feeds it edgewise along a feed path through to a sheet separator.
The sheet separator ensures that only one sheet is fed along the sheet path and separates any multiple sheets. A common type of sheet separator includes an advancing roller aligned adjacently and pinched with a reversing roller, both rollers have a high friction gripping surface. The advancing roller is driven in a sheet advancing direction while the reversing roller is driven to move a sheet in a reverse direction. The advancing roller provides a stronger positive force between the two rollers such that when they are pinched with a single sheet therebetween, the advancing roller causes the reversing roller to change direction and move in unison to move the sheet forward. The reversing roller is coupled to a torque limiter, which allows the reversing roller to slip with respect to the drive and hence to counter-rotate.
Where more than one sheet is picked and passes through to the sheet separator, the advancing roller engages with the top-most sheet while the reversing roller engages with the bottom-most sheet. The lack of resistance between the sheets means that the advancing roller cannot impart any frictional force to the reversing roller and hence the reversing roller is allowed to rotate in a reversing direction moving the bottom most sheet backwards while the top-most sheet is moved forward.
The feeding assembly must be able to quickly and efficiently feed each individual sheet in the queue to the printing, copying or scanning zone without creating a backlog and without jamming. This is particularly important where the sheets to be fed are original documents to be copied or scanned and cannot risk being damaged.
Generally, these sheet separators work well but are limited in the speed at which they can advance paper. This limitation is based on the limitations of the torque limiter, which will only allow the reversing roller to counter-rotate up to a certain speed dictated by the torque limiter's working mechanism.
It is therefore desirable to produce a sheet separator that can effectively function at high feeding speeds.
In one aspect, a sheet separator includes an advancing roller driven to rotate to move a sheet forwards along a sheet path. A reversing roller is driven to rotate to move a sheet backwards along the path. The reversing roller and advancing roller are mounted adjacently and are relatively moveable between a pinched position and a separated position. The reversing roller has a torque limiter for allowing the reversing roller to slip and counter-rotate with the advancing roller when friction applied by the advancing roller on the pinched reversing roller exceeds a preset value. Overriding means mounted with one of the advancing or reversing rollers allows a sheet to pass over that roller when the rollers are separated and to remain idle when the rollers are pinched.
Support housing 102 supports a reversing roller 110 mounted on a reversing roller shaft 112. A bracket 108 supports an advancing roller 104 mounted on an advancing roller shaft 106.
Bracket 108 is mounted to the larger machine (not shown) and is movable with respect to the housing 102 such that advancing roller 104 is moveable towards and away from reversing roller 110 to separate the two rollers 104,110. Bracket 108 is movable by way of a cam assembly (not shown) and is driven by a dedicated motor (not shown). Reversing roller 110 remains stationary in support housing 102 and is exposed to advancing roller 104 through housing opening 113.
In this embodiment the roller that is moveable to form a separation (also known as a separating roller), is the advancing roller 104, while the stationary, fixed roller is the reversing roller 110. However, it is possible to interchange the two rollers.
Movement of bracket 108 means that the gap between advancing roller 104 and reversing roller 110 can be adjusted between a “pinched” position, where the rollers are directly in contact (whether or not they are pinching several sheets of media in between), and a fully separated position where there is no contact between the rollers. The rolling surface on the circumference of both the advancing and reversing rollers 104,110 is lined with a high friction material for gripping and moving sheets of media in the rolling direction.
Both the advancing and reversing rollers 104,110 are driven in respective sheet forwarding and sheet reversing directions by a motor (not shown) coupled to the shafts by a gear train. This motor simultaneously drives the advancing roller 104, reversing roller 110 and the sheet picker. A large toothed gear 114, which is part of the gear train, is illustrated in
The advancing roller 104 is designed to forward a sheet more positively than the reversing roller 116 reverses a sheet. This is made possible by the reversing roller 110 being designed to slip with respect to the shaft or driving means and change rotating directions to rotate with the advancing roller and move a sheet forward when the torque applied by the advancing roller on the reversing roller exceeds a certain limit.
In a simple system torque slipping may be produced by mounting the reversing roller on its shaft in a gripping manner where the friction grip can be adjusted so that a torque applied on the reversing roller will cause the reversing roller to ungrip and slip with respect to its shaft when the torque exceeds a predetermined value. A more accurate and reliable means for allowing the reverse roller to slip with respect to the driving motor involves using a torque limiter.
A torque limiter 116, or torque clutch, is illustrated in
The pre-set torque value is also defined as being higher than the friction on the reversing roller 110 imparted by a sheet pinched between the rollers where the sheet is one of two or more sheets passing between the pinched rollers. Hence, if two or more sheets are picked and pass between the rollers the advancing roller 104 continues to advance the top sheet but slippage between the multiple sheets reduces the friction imparted on the reversing roller 110 to produce a torque lower than the pre-set torque value. Accordingly, the reversing roller 110 continues to rotate in a reversing direction thereby moving the sheet adjacent to it backwards.
The two scenarios described above can be summarized as follows and are represented by the flow chart of
A. When the rollers are pinched and 0 or 1 sheet is fed into the sheet separator, the advancing roller rotates in a sheet forwarding direction whereby the reversing roller counter rotates to forward the sheet in the same direction.
B. When the rollers are pinched and two or more sheets are fed therebetween—the advancing roller rotates in the sheet forwarding direction; and the reversing roller rotates in the same direction to move additional sheets in the opposite direction.
For clarity, the above scenarios are illustrated in
In
In this embodiment of the sheet separator, one other sheet separator scenario may be adopted to increase the sheet feeding speed. Namely, the rollers can be separated and a higher sheet feeding speed can be achieved by relying on the advancing motion of the sheet picker alone. This high speed comes at a sacrifice to the reliability of smooth and efficient feeding of one sheet at a time without damage.
This third scenario is illustrated in
However, providing this kind of gap causes problems with sheet kinking and jamming in the gap. This is compounded by the fact that the reversing roller 110 continues to rotate in a reversing direction that, despite the gap, tends to discourage a sheet from moving forward. The reversing roller 110 continues to rotate because it is driven by the same motor that drives the sheet picker. However, even if the reversing roller 110 stopped rotating sheet jamming still occurs because the sheets contact the gripping surface of the roller.
However, in an embodiment of the sheet separator, the reversing action or gripping properties of the reversing roller are overridden by two override rollers 300 that are activated in this scenario to allow a sheet 202 to freely pass through the gap between the rollers and over the reversing roller. In effect, the construction of the override rollers 300 are such that they remain idle when the rollers are pinched, not interfering with the pinched feed operation, but become active when the rollers are separated.
Override roller 300 is substantially annular and wheel-like in form. The roller 300 is made of moulded plastic and the surface of the circumference of the override roller 300 is moulded to be relatively smooth and having little friction. The circumference of the roller is also uneven such that one segment 302 of the circumference surface has a larger radius than the other, smaller radius segment 304. Large radius segment 302 spans from a step 306 to a first detent 308, spaced away at around one third of the circumference length of the override roller 300. The other two thirds of the roller are defined by the small radius segment 304. The small and large radius segments 304, 302 are formed such that when the override roller 300 is mounted against the end of the reversing roller 110, the small radius segment 304 is smaller than the radius of the reversing roller 110. This is best illustrated in
A second detent 310 on the small radius segment 304 is spaced from the first detent 308 by approximately one third of the circumference. Detents 308, 310 protrude radially outward from the circumference of the override roller 300.
As best illustrated in
In scenario A, (
In scenario B, (
In the third scenario (
In the above described embodiment of the sheet separator 100, the reversing roller 110 remains stationary in the housing 102 while the advancing roller 104 is moveable on bracket 108 towards and away from the reversing roller 110 between a pinched position and a separated position. However, it is foreseeable that the positions of the rollers 104,110 in the housing are reversed, namely that the advancing roller 104 remains stationary while the reversing roller 110 is mounted on a moveable bracket.
In this case, when the rollers are separated and the sheet picker feeds sheets of media at high speeds through the gap, the sheets pass over the advancing roller. While the advancing roller would still advance the sheets in a forward direction, jamming would still occur because the speeds at which the advancing roller operates are still lower than that of the sheet picker and hence the advancing roller cannot keep up with the sheet picker. Hence, an override roller mounted co-axially with the advancing roller would be useful in this embodiment.
The above embodiments disclose a sheet separator having two override rollers: one at each end of the reversing roller, or the advancing roller as the case may be. However, it is possible for the sheet separator to operate with only one override roller at one end of the reversing or advancing roller. Alternatively, another construction may involve having two shorter reversing rollers and locating one override roller inbetween the two rollers. These are some examples of possible configurations for the sheet separator.
The present sheet separator operates reliably to feed sheets at higher speeds without causing paper jams or concentrated stress points on the sheet. It feeds sheets smoothly over a roller, whether or not it is rotating, to pass efficiently along the sheet path.
The sheet separator provides reliability and confidence in fast feeding sheets into a main apparatus. Sheet media and particularly original documents can be safely fed and separated, even at high speeds through the sheet separator.
In another embodiment, the sheet separator includes a pair of adjacent rollers. One of the rollers is a separating roller in that it is mounted to move towards and away from the other, stationary, roller between a contacting position and a separated position. One of the rollers is driven to move a sheet forward along a sheet path. The other roller is driven to reverse a sheet back down the path and has a friction slipping means which will allow the reversing roller to slip and counter-rotate with the forwarding roller when the forwarding roller applies sufficient friction on the reversing roller. An override means is mounted with the stationary roller. The override means remains idle when the rollers are in contact and becomes active when the rollers are separated to allow a sheet to pass over the stationary roller.
In yet another embodiment, the sheet separator includes an advancing roller driven on a shaft to move a sheet in a forward direction along a sheet path. A reversing roller is driven on a shaft to move a sheet in a backward direction if more than one sheet simultaneously passes through the sheet separator. The advancing and reversing rollers are mounted to be mutually moveable between a pinched position and a separating position. A torque limiter coupled to the shaft of the reversing roller allows the reversing roller to slip and move in the same direction as the advancing roller when the advancing roller applies friction to the reversing roller. Overriding means is mounted with the reversing roller and remains inactive when the advancing and reversing rollers are pinched and becomes active when the advancing and reversing rollers are separated to allow a sheet to pass over the reversing roller.
Without departing from the spirit of the invention and scope of the attached claims, variations of the described structure and geometry of the sheet separator are possible, and envisaged, depending on the application and structure of the machine in which the sheet separator is mounted and the media to be forwarded and separated.