1. Field of the Invention
The present invention relates to a sheet storage apparatus for storing sheets, and an image forming apparatus including the sheet storage apparatus.
2. Description of the Related Art
Recently, image forming apparatuses, such as copiers, printers and facsimile machines, having a sheet feeding apparatus are widely used. Such an image forming apparatus feed a sheet with the sheet feeding apparatus to an image forming portion where an image is formed on the sheet. A typical sheet feeding apparatus includes a sheet feed cassette (sheet storage apparatus) that is drawably attached to the apparatus body and stores sheets to be fed to the image forming portion automatically. Some sheet feed cassettes include a sheet stacking portion on which sheets are stacked, and which is arranged to be lifted so that the sheets stacked thereon comes into contact with a sheet feed roller.
The sheet feed cassette having the sheet stacking portion includes a rear end regulation member. The rear end regulation member regulates a position of an upstream end (hereinafter referred to as a rear end), in a sheet feed direction, of the sheet stacked on the sheet stacking portion so as to allow a variety of sheets different in size to be stored in the cassette. Further, the sheet feed cassette is provided with a pair of side end regulation members that regulate a side end position in a direction orthogonal to the sheet feed direction (hereinafter referred to as a width direction).
The pair of side end regulation members of the sheet feed cassette regulates both side ends of the sheets while the rear end regulation member regulates the rear end of the sheets, so that the sheets are always positioned at the predetermined position. Thereby, sheets can always be fed from the same position on the sheet feed cassette stored in the apparatus body, and a stable sheet feeding performance can be achieved.
Meanwhile, there are increasing demands for realizing a large amount of printing on small-sized sheets such as postcards and envelopes. Conventionally, the small-sized sheets such as postcards and envelopes had to be fed through a manual sheet feed portion. Unfortunately, since the amount of sheets that can be stacked in the manual sheet feed portion was restricted to approximately 10 mm height, it was not suitable to perform printing on a large amount of sheets. In order to improve capability of massive printing, a sheet feed cassette allowing small-sized sheets to be stacked on is desirable, so that a large amount of the small-sized sheets are fed from the cassette. But generally, the minimum sheet size (A5 size, for example) that can be regulated using side end regulation members and rear end regulation member is larger than the small-sized sheets. Therefore, this kind of sheet feed cassette could not appropriately regulate the ends of the small-sized sheets smaller than the normally-used minimum sheet size (such as postcards and envelopes) with the side end regulation members and the rear end regulation member.
Here, Japanese Patent Application Laid-Open Publication No. 11-59925 discloses a sheet feed cassette having an auxiliary cassette (second cassette) capable of storing small-sized sheets and being attached to an inner side of a cassette body (first cassette). The second cassette includes a rear end regulation member and side end regulation members disposed at positions corresponding to ends of a sheet among small-sized sheets such as postcards and envelopes. This second cassette is attached to a sheet stacking portion of the first cassette, which is attached drawably to the apparatus body. This configuration enables the sheet feed cassette to regulate the ends of the small-sized sheet to be fed therefrom.
However, the side end regulation members and the rear end regulation member disclosed in the above document are fixed on the predetermined positions. Therefore, in order to feed multiple kinds of small-sized sheets different in size, it is necessary to prepare various types of second cassettes different in positions of side end regulation members and/or rear end regulation member positions. This configuration necessitates various types of second cassettes, which leads to increase in cost. Furthermore, users might feel inconvenient under this configuration because of time and labor required to select and replace the second cassettes manually each time the size of a small-size sheet in use is changed.
According to one aspect of the present invention, a sheet storage apparatus includes a storage apparatus body, a sheet stacking portion, a rear end regulation member, and a rear end regulation attachment. The sheet stacking portion has an opening opened in an upward and downward direction, and can move upward and downward with respect to a bottom portion of the storage apparatus body. The rear end regulation member is supported movably on the bottom portion of the storage apparatus body in a sheet feed direction and a direction opposite to the sheet feed direction, and regulates an upstream end position, in the sheet feed direction, of the sheet stacked on the sheet stacking portion. The rear end regulation attachment is detachably attached to the rear end regulation member. The rear end regulation attachment includes a regulating portion extending toward the bottom portion of the storage apparatus body through the opening in a state where the rear end regulation attachment is attached to the rear end regulation member. The regulating portion regulates the upstream end of the sheet on a position downstream, in the sheet feed direction, of a regulating position of the rear end regulation member.
According to another aspect of the present invention, a sheet storage apparatus includes a storage apparatus body, a sheet stacking portion, a side end regulation member, a rear end regulation member, and a rear end regulation attachment. The sheet stacking portion can move upward and downward with respect to a bottom portion of the storage apparatus body. The side end regulation member is supported movably on the bottom portion in a width direction orthogonal to a sheet feed direction, and abuts against an end portion in the width direction of the sheet stacked on the sheet stacking portion. The rear end regulation member is supported movably on the bottom portion in a sheet feed direction and a direction opposite to the sheet feed direction, and includes a main regulating surface abutting against an upstream end, in the sheet feed direction, of the sheet stacked on the sheet stacking portion. The sheet stacking portion includes a side end cutout portion for allowing movement of the side end regulation member and a rear end cutout portion for allowing movement of the rear end regulation member. The rear end regulation attachment is attached in a detachable manner to the rear end regulation member, and includes a subsidiary regulating surface to regulate the upstream end of the sheet. The subsidiary regulating surface is arranged downstream in the sheet feed direction of the main regulating surface of the rear end regulation member and. The rear end regulation attachment is attached to the rear end regulation member in a condition in which The rear end regulation attachment slidably contact with the bottom portion of the storage apparatus body through the side end cutout portion.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments, features, and aspects of the invention and, together with the description, serve to explain the principles of the invention.
Now, an embodiment of the present invention will be described in detail with reference to the drawings. At first, an image forming apparatus having a sheet feed cassette, i.e., a sheet storage apparatus, will be described with reference to
As illustrated in
A discharge space Sa for discharging sheets is formed between the image reading unit 2 and the apparatus body 1a. A toner cartridge 15 is arranged below the discharge space Sa, and a plurality of (four, in the present embodiment) sheet feeding apparatuses 29 are arranged at a lower portion of the apparatus body 1a.
The image forming portion 28 adopts a four-drum full-color system, and includes a laser scanner 10, and four process cartridges 11 for forming toner images of four colors, which are yellow (Y), magenta (M), cyan (C) and black (K).
Each process cartridge 11 include a photosensitive drum 12, i.e., a photosensitive body, a charging unit 13, i.e., a charging means, a developer 14, i.e., a developing means, and a cleaner (not shown), i.e., a cleaning means. Further, the image forming portion 28 includes an intermediate transfer unit 41 arranged above the process cartridges 11.
The intermediate transfer unit 41 includes an intermediate transfer belt 16, i.e., an image bearing member wound around a drive roller 16a, and a tension roller 16b. Further, the intermediate transfer unit 41 includes primary transfer rollers 19 arranged on an inner side of the intermediate transfer belt 16 and abutted against an inner side surface of the intermediate transfer belt 16 at positions opposing to the respective photosensitive drums 12. The intermediate transfer belt 16 is composed of a film-like member, and abutted against the respective photosensitive drums 12. The drive roller 16a that is driven by a drive unit not shown drivingly rotates the intermediate transfer belt 16 in an arrow direction.
On the intermediate transfer belt 16 is applied transfer bias having positive polarity by the primary transfer roller 19. Then, toner images of respective colors, which have negative polarity, are transferred to the photosensitive drums 12 under the transfer bias. These toner images are sequentially transferred to the intermediate transfer belt 16 in multiple layers. Thereby, a color image is formed on the intermediate transfer belt. At the position opposing to the drive roller 16a of the intermediate transfer unit 41 is arranged a secondary transfer roller 17 for transferring the color image formed on the intermediate transfer belt onto a sheet P. The drive roller 16a and the secondary transfer roller 17 pressed against the drive roller 16a constitute a secondary transfer nip N, i.e., a secondary transfer portion.
The fixing portion 20 is arranged downstream in a sheet conveyance direction from the secondary transfer roller 17. Above the fixing portion 20 are arranged a first discharge roller pair 25a, a second discharge roller pair 25b, and a surface reversing portion 42, i.e., a reverse discharge portion. The surface reversing portion 42 includes an inverting roller pair 26, i.e., a sheet reverse conveyance roller capable of bidirectional rotation, and a re-conveyance path R. The re-conveyance path R conveys the sheet that is formed an image on a first surface thereof to the image forming portion 28 again. The image forming portion 28, the secondary transfer nip N and the fixing portion 20 constitute an image forming unit 27 for forming images on a sheet P fed from the sheet feeding apparatus 29, which will be described in detail later. The image forming unit 27 forms an image on the sheet P sent from a sheet feed cassette 30.
With the configuration as described above, an image information read by the image reading unit 2 or entered from an external device such as a personal computer (PC) not shown is subjected to image processing, converted to electrical signals, and transmitted to the laser scanner 10 of the image forming portion 28.
In the image forming portion 28, the surfaces of the photosensitive drums 12 in the respective process cartridges 11 are scanned by laser beams emitted from the laser scanner 10, based on the image information of the respective color components of yellow, magenta, cyan and black. Thereby, the surfaces of the photosensitive drums 12 in the process cartridges 11 are charged evenly to predetermined polarity and potential by the charging units 13, exposed by the laser scanner 10, and formed with electrostatic latent images that correspond to respective single-colored images of yellow, magenta, cyan and black.
Thereafter, the electrostatic latent images are developed by the respective colored toners of yellow, magenta, cyan and black to be visualized. The colored toner images developed on the respective photosensitive drums are sequentially transferred and superposed on a preceding colored toner image, to the intermediate transfer belt 16 under primary transfer bias applied to the primary transfer roller 19. Thereby, a toner image is formed on the intermediate transfer belt 16.
Meanwhile, the sheet P sent from the sheet feeding apparatuses 29 passes a registration roller pair 40, and is transferred to the secondary transfer nip N. The registration roller pair 40 abut against the front end (downstream end) of the sheet P. With this configuration, a loop in sheet P is formed while the front end of the sheet P follows the nip portion, and skewing of the sheet P is corrected thereby. At the secondary transfer nip N, the toner images formed on the image forming portion 28 are collectively transferred (secondary-transferred) onto the sheet P.
Thereafter, the sheet P with the secondary-transferred toner image is conveyed to the fixing portion 20. The fixing portion 20 applies heat and pressure on the sheet P so that the toner image is fixed to the sheet as color image. The sheet P with a fixed color image is discharged by the first discharge roller pair 25a to the discharge space Sa, and stacked on a stacking portion 23 of the discharge space Sa.
Each sheet feeding apparatus 29 includes the sheet feed cassette 30 as an example of a sheet storage apparatus for storing the sheets P, and a sheet conveyance portion 24 for conveying the sheet P stored in the sheet feed cassette 30 toward a drawing roller pair 21 disposed downstream. The sheet conveyance portion 24 is arranged above and downstream in a sheet feed direction from the sheet feed cassette 30. The sheet conveyance portion 24 includes a pickup roller 62 and a separating roller pair 22 of a feed roller 60 and a retard roller 61. The pickup roller 62, i.e., a sheet feeding member, is supported pivotably in an upward and downward direction via a pivotable arm (not shown) around the feed roller 60. Being pressed against the sheet P stored in the sheet feed cassette 30, the pickup roller 62 rotates to send out the sheet P.
When image forming operation is started, the sheets P are separated and fed one by one from the sheet feed cassette 30 through the sheet conveyance portion 24. The pickup roller 62 is arranged above a sheet stacking portion 32 described later (refer to
The sheet P separated and conveyed by the separating roller pair 22 composed of the feed roller 60 and the retard roller 61 is sent further downstream by the drawing roller pair 21, and conveyed to the registration roller pair 40. Thereafter, as described above, image is formed on the sheet P, and the sheet is discharged.
Next, with reference to
As illustrated in
Further, a lifter arm 34 for lifting the sheet stacking portion 32 is supported pivotably on the bottom portion 30b within the cassette body 30a. When the controller 18 (refer to
A pair of side end regulation members 35a and 35b regulating end point positions in a width direction of the sheet are arranged in the cassette body 30a. As illustrated in
As illustrated in
The sheet stacking portion 32 includes side end cutout portions 32b and 32c formed on side portions thereof. The side end cutout portions 32b and 32c are configured to allow movement of the respective side end regulation members 35a and 35b in the width direction, that is, to form a space in which the side end regulation members 35a and 35b can move in the width direction. The side end cutout portions 32b and 32c form a space large enough for the side end regulation members to move in the width direction to a position capable of regulating the side ends of a minimum size (such as A5 size) sheet. Here, the “minimum size” represent the smallest size among sheet sizes to be stored in the sheet feed cassette 30 without using a rear end regulation attachment 100.
The rear end regulation member 36 is supported to slide on the bottom portion 30b along a groove-like guide portion 151 formed as a long cutout in the sheet feed direction (direction of arrow D) on the bottom portion 30b of the cassette body 30a. The sheet stacking portion 32 has a rear end cutout portion 152 formed in the same direction as the guide portion 151 so that the sheet stacking portion 32 does not interfere with the movement of the rear end regulation member 36 when the rear end regulation member 36 is slid.
In other words, the rear end regulation member 36 is guided by the guide portion 151 to be able to move in the sheet feed direction and a direction opposite thereto (opposite direction). The rear end cutout portion 152 forms a space allowing the rear end regulation member 36 to move in the sheet feed direction and the opposite direction, that is to say, forms a space in which the rear end regulation member 36 can move in the sheet feed direction and the opposite direction. The rear end regulation member 36 includes a main regulating surface 36a described later, which abuts against a rear end (upstream end) of the sheets P in the sheet feed direction stacked on the sheet stacking portion 32, regulating the rear end position of the sheets P.
According to the present embodiment, the sheet stacking portion 32 is formed so that the area between the side end cutout portions 32b and 32c is relatively narrow in the width direction, and that the rear end cutout portion 152 is formed along the longitudinal direction of the narrow sheet stacking portion 32.
With the above arrangement, the side end regulation members 35a and 35b and the rear end regulation member 36 are capable of sliding within the cassette body 30a. Therefore, users set positions of above regulation members arbitrarily within the predetermined regulation range depending on the size of the sheet being used, so that the front end position of sheets having an arbitrary size can be constantly regulated to a predetermined position.
It is noted that the regulation range of a rear end of a sheet by the rear end regulation member 36 is set normally as the range for regulating frequently-used sheets. In the present embodiment, the minimum size of a sheet capable of being regulated by the rear end regulation member 36 is determined, for example, to an A5-size. As for sheets of smaller sizes (such as postcards and envelopes), they are not sufficiently regulated by the rear end regulation member 36. It is conceivable that the range of motion (movable range in the sheet feed direction) of the rear end regulation member 36 is widened so as to enable regulation of small-sized sheets such as postcards and envelopes. With this configuration, however, the rear end cutout portion 152 of the sheet stacking portion 32 needs to be widened. That may lead to deterioration of the rigidity of the sheet stacking portion 32.
When the rigidity of the sheet stacking portion 32 is deteriorated, there is fear that the sheet stacking portion 32 is deformed. That is to say, the sheet stacking portion 32 lifted by the lifter arm 34 may be deformed under the weight of sheets, which may be a large number of sheets, have a large size (such as A3 size), or have large basis weight (such as a cardboard). In other words, the sheet stacking portion 32 cannot appropriately retain the weight of large-sized sheets. In a case that the sheets have not been lifted to reach a feedable position, feeding failure of the sheets may occur.
The present embodiment solves the above-described problem by attaching the rear end regulation attachment 100 to the rear end regulation member 36 in order to regulate the rear end of small-sized sheets. The details of this arrangement will be described below.
The arrangement of the rear end regulation member 36 on which the rear end regulation attachment 100 according to the present embodiment is attached will be described with reference to
As shown in
Therefore, the user can engage the engagement portion 36c to the irregular portion 151a by operating the pinching portion 36b, to thereby lock the rear end regulation member 36 to the cassette body 30a. Further, by separating the engagement portion 36c from the irregular portion 151a, the user can release the lock of the rear end regulation member 36 and move the rear end regulation member 36. The pinching portion 36b, the engagement portion 36c and the irregular portion 151a constitute a lock mechanism 36F (rear lock mechanism) for locking the rear end regulation member 36. A lock mechanism (side lock mechanism) for locking the side end regulation members 35a and 35b, which abut against the ends of the sheets, is also provided in the sheet storage apparatus. This lock mechanism fir the side end regulation members is arranged similarly as the lock mechanism of the rear end regulation member.
Next, an arrangement of a rear end regulation attachment 100 will be described with reference to
As illustrated in
As illustrated in
According to the present embodiment, the side end cutout portions 32b and 32c are utilized as openings formed through the sheet stacking portion 32 for arranging the regulating portion 100D. It is also possible to provide an opening that opens in the upward and downward direction separately from the side end cutout portions 32b and 32c, and have the regulating portion 100D arranged therein. In that case, similar to the side end cutout portion according to the present embodiment, it is preferable that the opening is formed to at least extend in the sheet feed direction so as to allow movement of the rear end regulation attachment 100 to the sheet feed direction and the direction opposite thereto. Further, the number of leg portions constituting the regulating portion 100D can be one, or more than three, depending on the arrangement of the apparatus.
The leg portions 100d and 100d respectively have subsidiary regulating surfaces 100b and 100b at side surfaces, downstream in the sheet feed direction, for regulating a rear end of small-sized sheets stacked on the sheet stacking portion 32. In other words, the regulating portion 100D has subsidiary regulating surfaces 100b and 100b arranged downstream in the sheet feed direction from the main regulating surface 36a in a state where the regulating portion is attached to the rear end regulation member 36. That is, with the subsidiary regulating surfaces 100b and 100b, the rear end regulation attachment 100 is capable of regulating the rear end (upstream end in the sheet feed direction) of a small-sized sheet, which has a shorter length in the sheet feed direction than the sheets being regulated by the main regulating surface 3a of the rear end regulation member 36 that is moved to the most downstream side. The subsidiary regulating surfaces 100b and 100b do not have to be disposed integrally with the leg portions 100d and 100d, and can be disposed separately from the leg portions 100d and 100d.
Further, as illustrated in
As shown in
As shown in
The rear end regulation member 36 is engaged to the rear side of the mounting hole formed in the mounting portion 100a. The rear surface and both side surfaces of the rear end regulation member 36 are supported by the support surface 100e as illustrated in
On the base 100h of the rear end regulation attachment 100 is disposed a connecting portion 100c positioned between leg portions 100d and 100d, which are arranged at different positions in the width direction. The connecting portion 100c connects the upper portion of the leg portions 100d and 100d. The connecting portion 100c is positioned above the sheet stacking portion 32 that is so lifted that the pickup roller 62 abuts against an uppermost sheet of the sheets stacked on the sheet stacking portion 32 (refer to
Accordingly, as illustrated in
As illustrated in
While the above-described rear end regulation attachment 100 is attached to the rear end regulation member 36, which is projected upward through the rear end cutout portion 152, the pair of the leg portions 100d and 100d abut against the bottom portion 30b in a lower end portion 100k in such a manner that the pair of the leg portions 100d straddle the sheet stacking portion 32 (refer to
When the rear end regulation attachment 100 is attached to the rear end regulation member 36, as illustrated in
Next, the details of the sheet feed cassette 30 with the rear end regulation attachment 100 being attached to the rear end regulation member 36 will be described with reference to
As described above with reference to
Now, it will be described with reference to
As illustrated in
Now, lifting operation of the sheet stacking portion 32 will be described with reference to
As illustrated in
Now, some operations for loading sheets P into the sheet feed cassette 30 will be described. At first, if the sheet size is equal to or greater than a minimum size (such as A5 size) that can be regulated by the rear end regulation member 36, the user places the sheets on the sheet stacking portion 32 while keeping the side end regulation members 35a and 35b and the rear end regulation member 36 on an outer-wall side of the cassette body 30a. Then, the user moves the side end regulation members 35a and 35b and the rear end regulation member 36 to a position corresponding to the side end positions and the rear end position of the sheets. In another example, the user moves the side end regulation members 35a and 35b and the rear end regulation member 36 in advance to a position corresponding to the size of the sheets to be loaded, and to place the sheets from above onto the sheet stacking portion 32. In this manner sheets having a size equal to or greater than the minimum sheet size (such as A5 size) are loaded into the sheet feed cassette 30 and regulated position thereof.
On the other hand, the user attaches the rear end regulation attachment 100 to the rear end regulation member 36 in loading small-sized sheets, which are smaller than the minimum size capable of being regulated by the rear end regulation member 36 (such as postcards and envelopes), to the sheet feed cassette 30. Then, the user places the small-sized sheets to the sheet stacking portion 32, and moves the side end regulation members 35a and 35b and the rear end regulation member 36. The user regulates the ends in the width direction of the sheets by the side end regulation members 35a and 35b, while regulating the rear ends of the sheets with the rear end regulation attachment 100 attached to the rear end regulation member 36. In this manner, small-sized sheets, which are smaller than the minimum size sheet (such as A5 size), are loaded into the sheet feed cassette 30 and sufficiently regulated position thereof. It is noted that various types of small-sized sheets having different dimensions in the sheet feed direction and/or the width direction may be loaded. Thus, the user moves the side end regulation members 35a and 35b and the rear end regulation member 36 to abut against the ends of stacked sheets depending on the dimension of the sheets, so as to regulate the side ends and the rear end of the sheet among the various types of sheets.
By the way, it is a conceivable arrangement that the rear end regulation attachment 100 is supported by the sheet stacking portion 32, by placing the rear end regulation attachment 100 on the sheet stacking portion 32, for example. But such an arrangement may lead to inconvenience as following. When the sheet stacking portion 32 is pivoted around a fulcrum of the support shaft 33 in moving the uppermost surface of the sheet to a feedable position for the pickup roller 62 (refer to
In contrast, according to the present embodiment, as illustrated in
As descried above, according to the present embodiment, small-sized sheets such as postcards and envelopes are fed with the rear end regulation attachment 100 that is easily attached to and removed from the rear end regulation member 36. Since it is not required to widen the area of cutout of the rear end cutout portion 152, regulation of the rear end of small-sized sheets is carried out appropriately without deteriorating the rigidity of the sheet stacking portion 32. With this configuration, the sheet feed cassette 30 stores a large amount of small-sized sheets so that the sheets are fed stably therefrom.
Further, the rear end regulation attachment 100 slides together with the rear end regulation member 36 within the sheet feed cassette 30, Thereby, a variety of sheets different in size are inclusively and stably regulated with the rear end regulation attachment 100. This arrangement eliminates the need for troublesome operations required in conventional arts, such as replacing attachments every time the sheet size is changed.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application Nos. 2015-002108, filed on Jan. 8, 2015, and 2015-239301, filed on Dec. 8, 2015, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2015-002108 | Jan 2015 | JP | national |
2015-239301 | Dec 2015 | JP | national |