The present invention relates to a sheet storage device and an image forming apparatus including a sheet storage device.
Some existing image forming apparatuses, such as copying machines, include a sheet storage device, such as a mail box, in which a sheet on which an image has been formed by an image forming section is stored.
PTL 1 describes an image forming apparatus that includes multiple sheet storage devices disposed below an image forming section. In the image forming apparatus described in PTL 1, sheets conveyed from a sheet conveying unit pass through entrances of the sheet storage devices and are stored in the sheet storage devices. When a user performs an operation, the user can selectively receive a desired sheet stored in any of the sheet storage devices.
With a demand for size reduction of image forming apparatuses, the size of such a sheet storage device is preferably reduced in the height direction. However, reducing the height of a sheet storage device by uniformly reducing the entire height of the sheet storage device is not preferable in terms of the sheet receiving performance. This is because, when curling sheets are stacked on top of one another, the curling sheets may block the entrance of the sheet storage device.
The present invention provides a sheet storage device whose size is reduced and having a high sheet receiving performance.
The present invention provides a sheet storage device in which a sheet that has been conveyed thereto by a sheet conveying unit is stored. The sheet storage device includes a first lower guide that guides a back surface of the conveyed sheet; a first upper guide that guides a front surface of the conveyed sheet; a second lower guide located downstream from the first lower guide in a sheet conveyance direction, the second lower guide being continuous with the first lower guide; and a second upper guide located downstream from the first upper guide in the sheet conveyance direction, the second upper guide being continuous with the first upper guide. In the sheet storage device, a point of intersection of the first upper guide and the second upper guide is located upstream from a point of intersection of the first lower guide and the second lower guide in the sheet conveyance direction.
In the present invention, the point of intersection of the first upper guide and the second upper guide is located upstream from the point of intersection of the first lower guide and the second lower guide in the sheet conveyance direction. Thus, the size of the sheet storage device can be reduced while the sheet receiving performance remains unaffected.
Referring now to the drawings below, embodiments of the present invention will be described.
The image forming section 101 includes a photosensitive drum 111, an exposure apparatus 113, a charging roller 112, a developing apparatus 114, and a transfer roller 115. The photosensitive drum 111 rotates clockwise in
The sheet feeding portion 102 includes a sheet feeding cassette 105, a sheet feeding roller 107, a conveying guide 109, and a registration roller 110. In the sheet feeding cassette 105, multiple sheets S fed for image forming are stored while being stacked on top of one another. The fixing section 103 includes a fixing roller 116, a pressing roller 117 that is pressed against the fixing roller 116 from below, and a fixing-ejecting roller 118.
A sheet reversing path 131, along which a sheet S is conveyed when images are formed on both of the front and back surfaces of the sheet S, is formed in a space surrounded by the image forming section 101, the fixing section 103, and the sheet feeding cassette 105.
The image forming apparatus according to the embodiment includes multiple sheet storage devices, that is, a first sheet storage device 201, a second sheet storage device 202, and a third sheet storage device 203 arranged in this order from above.
A pair of conveying rollers 211 is included in a sheet conveying unit that conveys a sheet on which an image has been formed to the first sheet storage device 201. Likewise, a pair of conveying rollers 212 is included in a sheet conveying unit that conveys a sheet to the second sheet storage device 202 and a pair of conveying rollers 213 is included in a sheet conveying unit that conveys a sheet to the third sheet storage device 203.
A conveying guide 120 guides a sheet conveyed by the fixing-ejecting roller 118 and a first switching member 208 and a second switching member 209 each switch a path along which a sheet is conveyed.
The first switching member 208 and the second switching member 209 are each switchable by an actuator, not illustrated, between a position drawn by the solid line in
Now, an image forming operation performed by the apparatus main body 100 having the above-described configuration will be described. First, when the apparatus main body 100 receives image information from a host apparatus (personal computer (PC)) or a network (a local area network (LAN)) connected to the apparatus main body 100, the exposure apparatus 113 emits a laser beam L in accordance with the image information. Here, neither the host apparatus nor the network is illustrated. Then, the surface of the photosensitive drum 111 that has been uniformly charged by the charging roller 112 such that the entirety of the surface has a predetermined polarity and a predetermined potential is exposed to the laser beam L.
Then, electric charges in a portion of the photosensitive drum surface that has been exposed to the laser beam L are removed and an electrostatic latent image is formed on the photosensitive drum surface. The developing apparatus 114 attaches a toner to the electrostatic latent image and develops the electrostatic latent image into a toner image. The toner image formed on the photosensitive drum 111 in the above-described manner is conveyed to a transfer nip portion as a result of clockwise rotation of the photosensitive drum 111, the transfer nip portion being formed between the photosensitive drum 111 and the transfer roller 115.
Meanwhile, sheets S on which images are to be formed are separately fed one by one by the sheet feeding roller 107 from the sheet feeding cassette 105 and then conveyed along the conveying guide 109 to the registration roller 110. Since the registration roller 110 is in a stationary state here, each sheet S is temporarily stopped by the registration roller 110. Then, the temporarily stopped sheet S is fed to the transfer nip portion by the registration roller 110 that starts rotating at a timing the same as the timing at which the toner image formed by the image forming section 101 arrives at the transfer nip portion.
Thus, the toner image on the photosensitive drum 111 is transferred to the sheet S by the transfer roller 115. The sheet S to which the toner image has been transferred from the photosensitive drum 111 in the above-described manner is conveyed to the fixing section 103, at which the sheet S is nipped and conveyed by a fixing nip portion formed between the fixing roller 116 and the pressing roller 117. Thus, the sheet S is heated and pressed and the toner image is fixed to the sheet surface.
In the case, for example, where a sheet S is conveyed to the first sheet storage device 201, the first switching member 208 and the second switching member 209 are switched to the positions drawn by the solid lines in
In the case where a sheet S is conveyed to the second sheet storage device 202, the first switching member 208 is switched to the position drawn by the solid line and the second switching member 209 is switched to the position drawn by the broken line. Then, the first switching member 208 and the second switching member 209 are held at the positions. Subsequently, the sheet S passes along the conveying guide 120, the conveying guide 204, and a conveying guide 206 in this order and is conveyed to the second sheet storage device 202 by the pair of conveying rollers 212.
In the case where a sheet S is conveyed to the third sheet storage device 203, the first switching member 208 is switched to the position drawn by the broken line and held at the position. Then, the sheet S passes along the conveying guide 120 and a conveying guide 207 in this order and is conveyed to the third sheet storage device 203 by the pair of conveying rollers 213.
In the case where images are to be formed on both surfaces of a sheet, the sheet on whose one surface (front surface) a toner image has been fixed is conveyed toward any one of the first to third sheet storage devices. When the trailing end of the sheet passes a junction 130, the pair of conveying rollers 211, the pair of conveying rollers 212, or the pair of conveying rollers 213 is caused to rotate in the reverse direction. Thus, the sheet S is reversed and guided to the sheet reversing path 131. The reversed sheet passes through the image forming section 101 and the fixing section 103 again and thus an image is formed on the back surface of the sheet. Since at least one of pairs of conveying rollers 211 to 213 is a pair of conveying rollers that are rotatable forward and rearward, images can be formed on both surfaces of a sheet.
Referring now to
The first sheet storage device 201 includes an exit 221 through which a sheet that has been conveyed by the pair of conveying rollers 211 is ejected. Likewise, the second sheet storage device 202 includes an exit 222 and the third sheet storage device 203 includes an exit 223.
The first sheet storage device 201 includes a first lower guide 251, which guides the back surface of a conveyed sheet, and a first upper guide 252, which guides the front surface of the conveyed sheet. The first sheet storage device 201 also includes a second lower guide 261 and a second upper guide 262. The second lower guide 261 is continuous with the first lower guide 251 and located downstream from the first lower guide 251 in the sheet conveyance direction. The second upper guide 262 is continuous with the first upper guide 252 and located downstream from the first upper guide 252 in the sheet conveyance direction. The first upper guide 252 and the first lower guide 251 are substantially parallel to each other. The space defined by the first upper guide 252 and the first lower guide 251 is referred to as a first sheet storage region. The second upper guide 262 and the second lower guide 261 are substantially parallel to the horizontal plane. The space defined by the second upper guide 262 and the second lower guide 261 is referred to as a second sheet storage region.
By locating the upper-guide intersection point 272 upstream from a vertical line a, which passes the lower-guide intersection point 271, in the sheet conveyance direction, the height of the sheet storage device can be reduced by an amount H.
This reduction of height of the sheet storage device does not lead to a change in height of the first sheet storage region 250, and thus the curling-sheet-receiving performance of the sheet storage device remains unaffected.
As drawn by the solid lines in
The dot-and-dash line b illustrated in
Here, the triangle T1 defined by the first upper guide 252, the line segment 275, and the bisector b and the triangle T2 defined by the line 264, the line segment 276, and the bisector b are congruent because two pairs of angles of the triangles T1 and T2 are equal in measurement and the included sides are equal in length. Accordingly, the line segment 275 and the line segment 276 have the same length and the first sheet storage region and the second sheet storage region have the same height if the upper-guide intersection point 272 is positioned at the point Y.
In the embodiment, since the upper-guide intersection point 272 is located upstream from the bisector b in the sheet conveyance direction, the height of the second sheet storage region can be made lower than the height of the first sheet storage region.
In this configuration, the height of the second sheet storage region can be reduced and thus the height of the sheet storage device can be reduced. In addition, by making the height of the second sheet storage region 260 lower than the height of the first sheet storage region 250, a curl formed in a sheet on a downstream side in the sheet conveyance direction can be flattened.
A sheet conveyed toward the first sheet storage device 201 is conveyed along the first lower guide 251 and the first upper guide 252, and then the leading end of the sheet is restricted by the second upper guide 262 when coming into contact with the second upper guide 262. The sheet that is in a bent state is conveyed along the second lower guide 261 and the second upper guide 262, stacked on top of a sheet stack A, and then stored in the position as illustrated in
As illustrated in
In this embodiment, the angle formed by the first upper guide 252 and the second upper guide 262 and the angle formed by the first lower guide 251 and the second lower guide 261 are obtuse angles. Thus, when the sheet that is curling as in
Now, an operation of the sheet storage device 200 will be described. First, a user instructs the apparatus main body 100 to perform a printing operation through a host apparatus (PC). At this time, a sheet detecting unit, not illustrated, detects whether or not any sheet is stored in each sheet storage device to determine the sheet storage device to which a sheet is to be conveyed. Alternatively, a predetermined sheet storage device exclusive to the user is selected as a destination of a sheet.
In the case where the first sheet storage device 201 is determined as a destination of the sheet, the positions of the first switching member 208 and the second switching member 209 are each switched in the above-described manner and the sheet is conveyed to and stacked on top of the first sheet storage device 201. Here, information on the user that has instructed printing to be performed on the sheet stored in the first sheet storage device 201 is stored in a memory unit. In other words, information as to whose job (the sheet on which printing has been instructed) is stored in which sheet storage device is stored in the memory unit. Thus, another job of the same user is conveyed to and stored in a sheet storage device that is available at that time without the user having to designate the sheet storage device in which his/her job is to be stored.
In the embodiment, the apparatus main body is described as including three sheet storage devices. However, the number of sheet storage devices is not limited to three. The number of sheet storage devices or the number of sheets storable in each storage device may be appropriately determined in accordance with the operating conditions of the apparatus main body, the number of users who share the apparatus main body, or the specification of the apparatus main body.
As illustrated in
As described above, according to the embodiment, the point of intersection of the first upper guide and the second upper guide is located upstream from the point of intersection of the first lower guide and the second lower guide in the sheet conveyance direction. Thus, the size of the sheet storage device can be reduced while the curling-sheet-receiving performance remains unaffected.
Now, a sheet storage device according to a second embodiment of the present invention will be described.
The sheet storage device according to the second embodiment differs from the sheet storage device according to the first embodiment only with regard to a configuration in which a sheet stored in the sheet storage device is output to the outside of the image forming apparatus by causing the sheet to pass through an exit at the time when a user is to receive the sheet. Other portions of the configuration are the same as those according to the first embodiment and thus will not be described.
A pair of conveying rollers 311 conveys a sheet to the first sheet storage device 301. Likewise, a pair of conveying rollers 312 conveys a sheet to the second sheet storage device 302 and a pair of conveying rollers 313 conveys a sheet to the third sheet storage device 303. The first sheet storage device 301 includes an exit 321 through which a sheet conveyed by the pair of conveying rollers 311 is ejected. Likewise, the second sheet storage device 302 includes an exit 322 and the third sheet storage device 303 includes an exit 323.
Sheet ejecting portions 341, 342, and 343 each move a sheet stored in the corresponding sheet storage device to a position at which a user can receive the sheet by pushing an upstream-side end (trailing end) of the sheet in the sheet conveyance direction until the leading end of the sheet is output to the outside of the sheet storage device. In the second embodiment, the full length of the sheet storage device in the sheet conveyance direction is set such that, even when the longest sheet storable in the sheet storage device is stacked on top of the sheet storage device, the leading end of the sheet does not protrude from the exit.
While sheets are in the course of being sequentially conveyed to the first sheet storage device 301, the sheet ejecting unit 341 is positioned at a first position 341a drawn by the solid line in
When an actuator, not illustrated, drives the sheet ejecting unit 341 to move forward or rearward, the sheet ejecting unit 341 reciprocates between the first position 341a and the second position 341b.
Now, an operation of the sheet storage devices according to the second embodiment will be described. As in the case of the first embodiment, when a user instructs the image forming apparatus main body to perform a printing operation, the sheet storage device to which a sheet is conveyed is automatically selected, the positions of the first switching member 208 and the second switching member 209 illustrated in
The sheet stored in the sheet storage device starts being ejected in response to a sheet ejection instruction instructed by the user. The sheet ejection instruction is instructed by, for example, pressing an ejection-start button on an operation panel of the apparatus main body, by authenticating the user with an ID card, or by issuing a command to start ejection through an external apparatus connected to the image forming apparatus.
For example, a command to start ejection can be issued by displaying user information, such as the name of the user or the ID number of the user who has stored his/her job in the sheet storage device, on an operation portion 230 disposed on a top surface portion of the apparatus main body 100 illustrated in
Since a controlling unit has information as to whose job is stored in which sheet storage device, the user does not have to know the sheet storage device in which his/her job is stored. When the user issues the above-described command to start ejection and the user authenticated by an authenticating unit and the user whose information is stored in the memory unit match each other, the sheet is ejected by the ejecting unit. Thus, the user can receive his/her job.
When the controlling unit receives a command to start ejection from the user, the controlling unit moves the sheet ejecting unit 341 corresponding to the sheet storage device that is supposed to eject the sheet from the first position 341a, at which the sheet is received, to the second position 341b, at which the sheet is ejected. The third sheet storage device 303 illustrated in
Thus, the user can receive his/her sheet stack C by grabbing the downstream-side end portion C1 output to the outside of the apparatus main body 100 and pulling the sheet stack C out of the apparatus main body 100.
Although not illustrated, a sensor that detects that the user has pulled the sheet stack out of the apparatus main body 100 is disposed near the exits 321 to 323. When the sensor detects that the sheet stack has been pulled out, the sheet ejecting units 341 to 343 move from the second position to the first position, so that the sheet storage device can receive a new sheet.
As described above, according to the second embodiment, sheets can be stored in the sheet storage device while being inaccessible from the outside but can be output to the outside of the sheet storage device in response to an ejection instruction from a user. Thus, the security of the sheets can be protected when an image containing highly confidential information or private information is printed on the sheets.
Now, a sheet storage device according to a third embodiment of the present invention will be described.
The sheet storage device according to the third embodiment differs from the sheet storage device according to the first embodiment only with regard to a sheet holding unit. Other portions of the configuration are the same as those of the first embodiment and thus will not be described.
A pair of conveying rollers 411 conveys a sheet to the first sheet storage device 401. Likewise, a pair of conveying rollers 412 conveys a sheet to the second sheet storage device 402 and a pair of conveying rollers 413 conveys a sheet to the third sheet storage device 403. A sheet holding unit 431 is disposed in the first sheet storage device 401. Likewise, a sheet holding unit 432 is disposed in the second sheet storage device 402 and a sheet holding unit 433 is disposed in the third sheet storage device 403.
Each sheet holding unit holds a sheet by applying an urging force to the sheet toward the first lower guide from above. The sheet holding unit 432 is lifted in the sheet storage device 402 by a sheet stack E, which has been conveyed to the sheet storage device 402, from the position drawn by the broken line in
As described above, as in the case of the sheet storage device according to the first embodiment, the sheet storage device according to the third embodiment has an effect of reducing the tightness of the curl in the trailing end portion in addition to the curl-flattening effect brought about due to the sheet storage device having a bent portion. These effects further improve a tightly-curling-sheet receiving performance of the sheet storage device. The curl-flattening effect is also brought about due to the sheet holding unit continuously applying an urging force to the trailing end of a sheet stack while the sheet stack is stored in the sheet storage device. Here, each sheet holding unit is disposed upstream from the bent portion of the sheet storage device in the sheet conveyance direction, that is, inside the first sheet storage region, and thus does not directly affect the height of the second sheet storage region extending in the direction in which sheets are stacked. Accordingly, the sheet holding unit does not prevent reduction in full height of the sheet storage device.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2012-095010, filed Apr. 18, 2012, which is hereby incorporated by reference herein in its entirety.
100 image forming apparatus
101 image forming section
201 first sheet storage device
202 second sheet storage device
203 third sheet storage device
221 exit
222 exit
223 exit
250 first sheet storage region
251 first lower guide
252 first upper guide
260 second sheet storage region
261 second lower guide
262 second upper guide
271 lower-guide intersection point
272 upper-guide intersection point
341 sheet ejecting unit
411 sheet holding unit
a vertical line crossing a lower-guide intersection point
b bisector of an angle formed by a first lower guide 251 and a second lower guide 261
A sheet stack
Number | Date | Country | Kind |
---|---|---|---|
2012-095010 | Apr 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/001650 | 3/13/2013 | WO | 00 |