The present disclosure relates to a sheet storage device for storing sheets, and an image forming apparatus having the sheet storage device.
There are some conventional image forming apparatuses provided with a regulation unit on the sheet stacking face of a sheet feeding unit. The regulation unit is disposed movable in the width direction to set the sheet position at a predetermined position in the width direction perpendicularly intersecting with the sheet conveyance direction. To hold the sheet position in the width direction, the regulation unit is configured so as to act a predetermined retention force between an apparatus main body and the regulation unit. As a method for providing the retention force, for example, an elastically deformable contact shape formed of such a material as synthetic resin is urged to the apparatus main body to generate a frictional force so that a predetermined pressure is generated. The regulation unit is provided with a guided portion, and the apparatus main body is provided with a guide hole. The guide hole is formed in an oblong shape along the width direction, and the guided portion is inserted into the guide hole. When the regulation unit is operated, the guided portion can move in the width direction while being guided by the guide hole and rubbing the guide hole.
In a configuration discussed in Japanese Patent Application Laid-Open No. 7-101561, a regulation unit may incline depending on an operated position when the regulation unit is operated. In this case, since a guided portion obliquely rubs a guide hole, frictional force can occur.
According to an aspect of the present invention, a sheet storage device includes an apparatus main body, a stacking unit disposed on the apparatus main body and configured to stack sheets to be stored, a regulation unit configured to move with respect to the apparatus main body, and to regulate edge positions of the sheets to be stacked on the stacking unit, and a facing member disposed on the apparatus main body, at a position facing the stacking unit across the regulation unit, wherein the regulation unit includes a first contact portion configured to contact the stacking unit in a state of being urged toward the stacking unit, and a second contact portion configured to contact the facing member in a state of being urged toward the facing member.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Exemplary embodiments will be described as illustrative in detail below with reference to the accompanying drawings. However, sizes, materials, shapes, and relative arrangements of constituent parts described in the exemplary embodiments are not limited thereto and are to be modified as required depending on the configuration of an apparatus according to the exemplary embodiments and other various conditions. The scope of the present invention is not limited to the exemplary embodiments described below.
An exemplary embodiment will be described below centering on an electrophotographic image forming apparatus having one attachable and detachable process cartridge, as an example of an image forming apparatus. However, the number of process cartridges to be attached is not limited thereto and suitably set as required. For example, in a case of an image forming apparatus for forming a full color image, four process cartridges are attached. Although the following exemplary embodiments will be described below centering on a printer as an example of an image forming apparatus, the image forming apparatus is not limited thereto. The present disclosure is also applicable to other image forming apparatuses including a copying machine, a facsimile machine, and a multifunction peripheral including combined functions of these apparatuses.
The photosensitive drum 101 is uniformly charged to a predetermined polarity and potential by a charging roller 102, and then subjected to image exposure by an image exposure unit 100. Then, an electrostatic latent image corresponding to a target image is formed. Subsequently, at a development position, the electrostatic latent image is developed, by a developing roller 104 included in a development unit 103, to be visualized as a toner image.
When the toner image formed on the photosensitive drums 101 passes through transfer portion formed by the photosensitive drum 101 and a transfer roller 105, the toner image is transferred onto a recording medium (sheet) P that is conveyed by a conveyance unit 108 included in a conveyance apparatus 2. The image forming apparatus 1 according to the present exemplary embodiment is partly formed of the conveyance apparatus 2. The direction of an arrow D illustrated in
The sheet P with the toner image transferred thereon at the transfer portion is subjected to fixing processing by a fixing unit including a fixing roller 106 and a heating member 107. Then, the toner image is fixed to the sheet P. More specifically, when the sheet P is being conveyed between the fixing roller 106 and the heating member 107 of the fixing unit, the toner image is melted by the heat of the heating member 107 and then fixed to the surface of the sheet P. Then, the sheet P is conveyed from the fixing unit to the discharge roller 109 and then discharged out of the apparatus by the discharge roller 109, and is stacked on a discharge tray 110.
A configuration of the conveyance apparatus 2 as a sheet storage device for storing sheets will be described below with reference to
The conveyance apparatus 2 includes a stacking unit 201, a feeding unit 202, and a separation unit 203. The stacking unit 201, capable of stacking the sheets P to be fed, includes a sheet tray 204 as a first stacking member and a stacking plate 205 as a second stacking member disposed on the apparatus main body 1.
The stacking plate 205 formed of, for example, a sheet metal is attached to the apparatus main body 1. The feeding unit 202 includes a feeding roller 207, an arm member 208 holding the feeding roller 207 and a drive member 215, a drive shaft 209, and a one-way clutch 210. The separation unit 203 includes a conveyance slope 211 and separation members 212.
After inserted into the stacking unit 201, the sheets P push up the feeding roller 207 and then stop at a position where the leading edge of the sheets P abuts against the conveyance slope 211. When the insertion of the sheets P is completed, the feeding roller 207 is in contact with the surface of the sheet P by the weight of the feeding roller 207 itself. When a signal to start printing is sent to the apparatus main body 1, the feeding roller 207 is rotated by a drive system (not illustrated) including a motor. The feeding roller 207 conveys the stacked sheet P to the separation members 212. Projection shapes are formed on the separation members 212. When the leading edge of the sheet P is caught by the projection shapes of the separation members 212, only the uppermost sheet P is separated from a plurality of the sheets P and then conveyed to a conveyance roller pair 108 along the conveyance slope 211.
A regulation unit 200 illustrated in
The operation portions 303 are disposed at the respective edges on the upstream side of the width regulation portions 301 in the conveyance direction D of the sheet P. The operation portions 303 are provided to be operated by the user. The first regulation member 221 and the second regulation member 222 are disposed to face each other, and the first plate 302 for each of them is provided with a rack portion 305 that is engaged with the pinion gear 309 as an interlocking member. If either one of the first regulation member 221 and the second regulation member 222 is moved via the pinion gear 309, the other regulation member can be moved in an interlocking manner. This makes it possible to regulate and settle the position of the sheet P in the width direction W from both sides.
The second regulation member 222 of the regulation unit 200 is provided with a stopper member 310 for restricting the inclination when the regulation unit 200 is operated. The stopper member 310 is configured as a separate member of the main part of the regulation unit 200.
The stopper member 310 is an inclination regulation member formed of synthetic resin having good sliding characteristics, such as polyacetal resin (POM).
When the regulation unit 200 is to be moved, the operation portion 303 is applied with an operation force B, and retention forces F2 and F1 are generated by friction at the first contact portion 312 and the second contact portion 313, respectively. When the first contact portion 312 serves as a fulcrum, the moment by the retention force F1 acting on the second contact portion 313 acts in the opposite direction, which prevents the inclination of the orientation of the regulation unit 200. Also, when the second contact portion 313 serves as a fulcrum, the inclination of the orientation of the second regulation member 222 can be similarly prevented by the retention force F2 acting on the first contact portion 312.
Even when the second regulation member 222 is being moved, the retention forces F2 and F1 are acting on the first contact portion 312 and the second contact portion 313, respectively, against the operation force B. This makes it possible to move the second regulation member 222 without inclining the orientation of the second regulation member 222.
Although, in the present exemplary embodiment, the guided portion 306 is disposed on the first plate 302 and the guide hole is disposed on the facing member 307, the guided portion 306 may be disposed on the second plate 300 and the guide hole may be disposed on the apparatus main body 1 on the stacking plate 205 side.
Although, in the present exemplary embodiment, the second regulation member 222 is provided with the first contact portion 312 and the second contact portion 313, the first regulation member 221 may be provided with the first contact portion 312 and the second contact portion 313 or both regulation members may be provided with the first contact portion 312 and the second contact portion 313.
According to the present exemplary embodiment, a pair of regulation members 221 and 222 are interlocked by using the rack portion 305 and the pinion gear 309. However, only one regulation member 221 or 222 may be movably disposed, and the one movable regulation member 221 or 222 may be provided with the first contact portion 312 and the second contact portion 313.
Although, in the present exemplary embodiment, the rack portion 305 and the pinion gear 309 for interlocking the pair of regulation members 221 and 222 are disposed on the facing member 307, the rack portion 305 and the pinion gear 309 may be disposed on the side of the stacking plate 205.
Although, in the present exemplary embodiment, a metallic compression spring as the urging member 316 for providing urging forces is disposed between the first contact portion 312 and the second contact portion 313, the configuration is not limited thereto. For example, the first contact portion 312 and the second contact portion 313 may be provided at the hook-shaped tips, and by contacting the first contact portion 312 and the second contact portion 313 respectively with the stacking plate 205 and the facing member 307 to bend the hook-shaped portion. In this case, the urging member 316 can be eliminated by urging the tips by the elastic force produced by the hook shapes being bent.
An image forming apparatus according to a second exemplary embodiment of the present invention will be described below with reference to
The first hook 314 and the second hook 315 are formed on outer side of the sheet P and the width regulation portion 301 in the width direction W, and are formed in shapes easily elastically deformable in the sheet stacking direction H. The first contact portion 312 is disposed to contact the stacking plate 205, and the second contact portion 313 is disposed to contact the facing member 307.
The urging member 316, such as a metallic compression spring, is disposed between the first contact portion 312 and the second contact portion 313.
The first contact portion 312 and the second contact portion 313 are configured to balance as forces having approximately the same magnitude are applied to the first contact portion 312 and the second contact portion 313. This configuration makes it possible, even if a reaction force is applied by each contact portion, to prevent the orientation of the regulation unit 200 from inclining in the sheet stacking direction H by being pressed by the reaction force with the guided portion 306b as a fulcrum. When the regulation unit 200 is to be moved, the operation portion 303 is applied with an operation force B, and retention forces F2 and F1 are generated by friction at the first contact portion 312 and the second contact portion 313, respectively. When the first contact portion 312 serves as a fulcrum, since the moment by the retention force F1 acting on the second contact portion 313 acts in the opposite direction, the inclination of the orientation of the regulation unit 200 can be restricted. Also, when the second contact portion 313 serves as a fulcrum, the inclination of the orientation of the regulation unit 200 can be similarly prevented by the retention force F2 acting on the first contact portion 312.
Even when the regulation unit 200 is being moved, the retention forces F2 and F1 are acting on the first contact portion 312 and the second contact portion 313, respectively, against the operation force B. This makes it possible to move the regulation unit 200 without inclining the orientation of the regulation unit 200. The number of parts can be reduced by integrally forming the first hook 314 and the second hook 315 with the regulation unit 200.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2017-252538, filed Dec. 27, 2017, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2017-252538 | Dec 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7540495 | Okuda | Jun 2009 | B2 |
20090008869 | Youn | Jan 2009 | A1 |
20110140352 | Tanaka | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
1727267 | Feb 2006 | CN |
7-101561 | Apr 1995 | JP |
07-223758 | Aug 1995 | JP |
H09-136728 | May 1997 | JP |
11-322087 | Nov 1999 | JP |
2000-219330 | Aug 2000 | JP |
2011-126620 | Jun 2011 | JP |
2012-046313 | Mar 2012 | JP |
5622660 | Nov 2014 | JP |
2014-234287 | Dec 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20190193977 A1 | Jun 2019 | US |