Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
The image forming portion 2 forms an image on the recording sheet P by forming a toner image on a photosensitive drum 20 based on the image data transferred from the image input portion 1, and then performing first image transfer of the toner image to an endless intermediate image transfer belt 3, and further performing second image transfer of the toner image on the intermediate image transfer belt 3 to the recording sheet P. The recording sheet P onto which the toner image underwent second image transfer is ejected onto an ejection sheet tray 50 after passing through a fixing device 4. Specifically, the photosensitive drum 20 rotates in the direction of the arrow at a prescribed process speed, and around it are disposed a charge corotron 21 for uniformly charging a surface of the photosensitive drum 20 up to a prescribed background potential, a laser beam scanner 22 for forming an electrostatic latent image on the photosensitive drum 20 by exposing the photosensitive drum 20 using a laser beam modulated based on the image data, a rotary developer unit 23 having black, yellow, magenta, and cyan color developing devices for developing the electrostatic latent image on the photosensitive drum using one of the developing devices, an image transfer pre-processing corotron 24 for removing the potential from the photosensitive drum 20 ahead of first image transfer of the toner image to the intermediate image transfer belt 3, and a cleaner 25 for removing residual toner on the photosensitive drum 20 after first image transfer of the toner image is complete.
The intermediate image transfer belt 3 is stretched across multiple rollers and rotates in the direction of the arrow, the color toner images formed sequentially on the photosensitive drum 20 are transferred onto the intermediate image transfer belt 3 in an overlaid fashion, and then undergo second image transfer in a batch to the recording sheet P from the intermediate image transfer belt 3. A first image transfer roller 30 for forming an image transfer electric field between the intermediate image transfer belt 3 and the photosensitive drum 20 is disposed in a position opposing the photosensitive drum 20 sandwiching the intermediate image transfer belt 3, while a second image transfer roller 31 and an opposing electrode roller 32 are disposed sandwiching the intermediate image transfer belt 3 at a position of second image transfer of the toner image, and the recording sheet P receives image transfer of the toner image when passing between the second image transfer roller 31 and the intermediate image transfer belt 3. Along the rotating path of the intermediate image transfer belt 3, a belt cleaner 33 for eliminating paper dust and residual toner from the surface of the intermediate image transfer belt 3 which has finished second image transfer is provided the second image transfer position and the first image transfer position.
Sheet trays 5a to 5d in four levels which store the recording sheets P of different sizes are provided below the image forming portion 2. A recording sheet P of an appropriate size corresponding to the document size detected by the image input portion 1 is sent to the image forming portion 2 from one of the sheet trays by a pick-up roller 51. Multiple sheet transporting rollers 52 are disposed along the transporting path of the recording sheet P from the sheet trays 5a to 5d until reaching the second image transfer position of the toner image. A sheet registration roller 53 is disposed upstream in the transporting direction of the second image transfer position. The sheet registration roller 53 sends the recording sheet P sent from the sheet trays 5a to 5d to the second image transfer position at a prescribed timing synchronized with the timing of writing the electrostatic latent image on the photosensitive drum 20.
Note that in
With a color copier of the exemplary embodiment of the present invention constituted as described above, the laser beam scanner 22 exposes the photosensitive drum 22 based on the image information of the document read by the image input portion 1, and the electrostatic latent image corresponding to black is written to the photosensitive drum 20 first. At the same time, the black toner developing device is set to a position opposing the photosensitive drum 20 in the rotary developer unit 23, and the electrostatic latent image is developed by the black developing device slightly after the writing timing. The black toner image formed in this way undergoes first image transfer onto the intermediate image transfer belt 3 by the first image transfer roller 30, and the intermediate image transfer belt 3 rotates, holding the toner image as is. When the developing step by the black developing device is complete, the developing units switch while the intermediate image transfer belt 3 finishes one rotation cycle, and the yellow toner developing unit is set to a position opposing the photosensitive drum 20 by a 90° rotation of the rotary developing unit 23. These operations are repeated during one rotation cycle of the intermediate image transfer belt 3 thereafter, with the yellow, magenta, and cyan toner images transferred to the intermediate image transfer belt 3 from the photosensitive drum 20 each time, and the toner image being formed on the intermediate image transfer belt 3 through overlaying of the toner images of the four colors. A full-color overlaid transferred toner image formed in this way undergoes second image transfer to the recording sheet P sent from the sheet registration roller 53 in the prescribed timing, and the recording sheet P to which the unfixed toner image has been transferred passes through the fixing device 4 and is ejected into the ejection sheet tray 50.
Next,
The sheet tray 5 is formed in an approximately rectangular shape provided with a storage area for the recording sheets P, and is constituted such that the recording sheets P can be inserted from a front side (the side in front of the paper in
Next,
A wire 69 which is looped around a pulley 62 is linked to the bottom plate 60, and when the wire 69 is wound by a winding pulley 71 which is linked to a lift-up motor 72, the bottom plate 60 rises inside the sheet tray 5 and the topmost recording sheet P makes contact with the pick-up roller 51. The winding pulley 71 is constituted so as to be linked to the lift-up motor 72 when the sheet tray 5 is pushed into the copier casing, and then separated from the lift-up motor 72 when the sheet tray 5 is pulled out of the copier casing. For this reason, when the sheet tray 5 is pulled out of the apparatus casing, the bottom plate 60 descends to the bottom surface of the sheet tray 5 due to its own weight, allowing a user easily to fill the recording sheets P. When the sheet tray 5 is detected by an unillustrated sensor as being completely pushed into the copier casing, the lift-up motor 72 is driven and the wire 69 is wound in preparation for feeding the recording sheets P, and the bottom plate 60 is raised until the topmost recording sheet P in the sheaf of sheets loaded on the bottom plate 60 touches the pick-up roller 51.
Further, the pick-up roller 51 is movably disposed vertically, and gradually descends as the number of recording sheets P loaded on the bottom plate 60 decreases through sheet feeding. In order to maintain the pick-up roller 51 at approximately the same height level as the transporting roller 63, an unillustrated sensor detects when the pick-up roller 51 descends to a prescribed height level through continuous sheet feeding, and the lift-up motor 72 is constituted so as to be driven for a prescribed amount of time, triggered by a change in the output signal of this sensor. Through this, the bottom plate 60 rises only by an amount equal to the thickness of the recording sheets P which have been fed, and the topmost recording sheet P in the sheet tray 5 comes in contact with the pick-up roller 51 always at the prescribed height.
With this type of photoelectric copier, in particular color copiers which perform overlay image transfer of toner images of many colors onto a recording sheet P, an ideal image transfer bias needs to be applied to the second image transfer roller 31 which corresponds to the thickness of the recording sheet P, and if the image transfer bias applied is inappropriate, retransfers due to faulty transfer of the toner image or inverted polarity of the toner occur, making it impossible to form a high-quality image. In order to prevent double-feeding of the recording sheets P during sheet feeding of the recording sheets P from the sheet tray 5, it is desired to optimize the contact pressure of the separating roller 64 on the transporting roller 63 in accordance with the thickness of the recording sheets P. For this reason, in this copier, the thickness of the recording sheets P set in the sheet tray 5 is learned, and the second image transfer bias of the toner image, the contact pressure of the separating roller 64, and more are optimized in accordance with the learned thickness of the recording sheets P.
Next,
In
The transporting roller 63 and the separating roller 64 are provided to mutually opposing positions. The transporting roller 63 transports a sheet touching a cylindrical surface to the right in the drawing by rotating the cylindrical surface around a shaft. The separating roller 64 is supported at one end by a pivotably provided arm 65a around a supporting shaft 65. The arm 65a pivots around the supporting shaft 65 either in a direction in which the cylindrical surface of the separating roller 64 presses against the cylindrical surface of the transporting roller 63 or in the opposite direction. An elastic member 66 is linked to the other end of the arm 65a, and the separating roller 64 is biased upward by the elastic force (a downward force in the drawing) of the elastic member, and its cylindrical surface is pressed against the cylindrical surface of the transporting roller 63. The transporting roller 63 and the pick-up roller 51 are rotationally driven by a common feed DC motor (not shown), while the separating roller 64 is linked to a drive shaft of a DC motor 68 via a torque limiter (not shown), and is rotationally driven in the same direction as the transporting roller 63. In other words, the separating roller 64 is rotationally driven in a direction such that a force in the opposite direction of the sheet transporting direction is applied to the recording sheet P. However, if more than a prescribed torque acts on the separating roller 64, it rotates in the opposite direction from the transporting roller 63. In other words, it rotates in a direction such that a force is applied to the sheet in the same direction as the transporting direction of the recording sheet P.
A rod-shaped contact member 84 is a sheet thickness measuring member, with one end pivotably supported by a shaft 85 and another end touching a receiving portion 86. When the recording sheet P moves between the transporting roller 63 and the separating roller 64 and furthermore moves between the contact member 84 and the receiving portion 86, the contact member 84 pivots downward in the drawing according to the thickness of the recording sheet P. With this pivoting, a signal generating device (not shown) such as a potentiometer generates an output signal corresponding to the pivot angel of the contact member 84 (i.e., the thickness of the recording sheet P), and provides this signal to the sheet feeding controlling portion 70. The sheet feeding controlling portion 70 can specify the thickness of the recording sheet P by analyzing this output signal.
In order to completely prevent double-feeding of the recording sheets P, the strength of the separating action by the separating roller 64 can be adjusted according to the thickness and so on of the recording sheets P being used. As shown in
When a user performs a copy job and the sheet tray 5 to be used during that job is selected automatically or manually, the sheet feeding controlling portion 70 measures the thickness of the recording sheet P to be used in that job, and sets the image transfer bias corresponding to the thickness of the recording sheet P to an image transfer bias power supply 78. Through this, an image transfer bias of an optimum strength corresponding to the recording sheet P can be applied when performing second image transfer of the toner image from the intermediate image transfer belt 3 to the recording sheet P, making it possible to prevent faulty transfer of the toner image or retransfer.
Next, two operation examples of the sheet feeding apparatus are described.
In the first example, a sheet feeding apparatus can change the strength of the separating action by the separating roller 64 in two levels. Below, sheet separation with a strong separating action is called “strong separation,” and sheet separation with a weak separating action is called “weak separation.” A “strong separation” setting is a setting in which the rotation torque generated by a DC motor 68 is highest within a range in which sheet feeding of a recording sheet P is possible by a transporting roller 63. When instructed to begin transporting the recording sheet P, the sheet feeding controlling portion 70 instructs the torque controlling portion 80 such that strong separation of the two levels of separating action is realized throughout the period from the start of transportation until a prescribed number of recording sheets P is transported, and the torque controlling portion 80 adjusts the rotational torque of the separating roller 64 in accordance with this instruction. Once the prescribed number of recording sheets P from the start of transportation is finished being transported, the sheet feeding controlling portion 70 instructs the torque controlling portion 80 such that weak separation of the two levels of separating action is realized, and the torque controlling portion 80 adjusts the rotational torque of the separating roller 64 in accordance with this instruction.
When the sheet feeding controlling portion 70 receives a sheet feeding start instruction signal from a main controlling portion, which is not shown, and receives an instruction to begin transporting the recording sheets P (step S1: Yes), the separating action by the separating roller 64 is set to “strong separation,” and the setting is stored in an internal memory (step S2). The torque controlling portion 80 rotationally drives the DC motor 68 with a large rotational torque according to this setting. With this, the separating action of the separating roller 64 becomes large.
Next, the sheet feeding controlling portion 70 begins a sheet feeding operation (step S3), and determines whether or not an output signal is supplied from a signal generating device such as a potentiometer in accordance with a pivot angle of the contact member 84 (step S4). An output signal being supplied to the sheet feeding controlling portion 70 from the signal generating device (step S4: Yes) means that the recording sheet P has reached the position of a sheet thickness measuring part (between the contact member 84 and the receiving portion 86). The sheet feeding controlling portion 70 measures the thickness of the recording sheet P by analyzing this output signal (step S5).
Next, the sheet feeding controlling portion 70 determines whether or not the thickness of all the prescribed number (e.g., 10 sheets) of the recording sheets P has been measured from the start of the transportation of the recording sheets P (step S6). Here, the reason for measuring the thickness of the prescribed number of recording sheets P is to measure the thickness of multiple recording sheets P and average that in order to arrive at a more accurate thickness. Accordingly, the sheet feeding controlling portion 70 repeats the process of steps S4 to S6 until all the prescribed number (10) of recording sheets P from the beginning of the transportation of the recording sheets P is measured (step S6: No).
When the prescribed number (10) of recording sheets P from the beginning of the transportation of the recording sheets P passes the position of the sheet thickness measuring part and the thicknesses are all measured (step S6: Yes), the sheet feeding controlling portion 70 sets the separating action of the separating roller 64 to “weak separation,” and further sets this to a strength of separating action according to the thickness of the recording sheets P (the average thickness of 10 sheets) within a setting range for weak separation (step S7). The sheet feeding controlling portion 70 instructs the torque controlling portion 80 such that the strength of separating action which has been set is realized. In accordance with this instruction, the torque controlling portion 80 rotationally drives the DC motor 68 with a relatively weak rotational torque in accordance with the thickness of the recording sheet P. In other words, the separating action of the separating roller 64 is small, and at a strength in accordance with the thickness of the recording sheet P.
After this, the sheet feeding controlling portion 70 begins transporting the recording sheets P after the prescribed number of sheets with this weak separation (step S8), and determines whether or not the number of recording sheets P instructed by the sheet feeding start instruction signal has finished being transported (step S9). Once all the transportation is complete (step S9: Yes), the operation of the sheet feeding controlling portion 70 finishes.
Below follows a description of the second operation example.
This second operation example shares with the fist operation example the fact that the strength of separating action by the separating roller 64 can be changed in two levels by the sheet feeding apparatus, but differs from the first operation example in the fact that when an instruction is given to begin transporting the recording sheets P, the torque of the separating roller 64 is adjusted to “strong separation” until the thickness of the first recording sheet P is measured, and thereafter set to “weak separation.”
When the sheet feeding controlling portion 70 receives a sheet feeding start instruction signal from a main controlling portion, which is not shown, and receives an instruction to begin transporting the recording sheets P (step S1: Yes), the separating action by the separating roller 64 is set to “strong separation,” and the setting is stored in an internal memory (step S2). The torque controlling portion 80 rotationally drives the DC motor 68 with a large rotational torque according to this setting. With this, the separating action of the separating roller 64 becomes large.
Next, the sheet feeding controlling portion 70 begins a sheet feeding operation (step S3), and determines whether or not an output signal is supplied from a signal generating device such as a potentiometer in accordance with a pivot angle of the contact member 84 (step S4). An output signal being supplied to the sheet feeding controlling portion 70 from the signal generating device (step S4: Yes) means that the recording sheet P has reached the position of a sheet thickness measuring part (between the contact member 84 and the receiving portion 86). The sheet feeding controlling portion 70 attempts to measure the thickness of the recording sheet P by analyzing this output signal (step S5).
The sheet feeding controlling portion 70 then determines whether or not measurement of the thickness of the recording sheet P was successful (step S11). If the measurement of the thickness of the recording sheet P was successful (step S11: Yes), then the sheet feeding controlling portion 70 sets the separating action by the separating roller 64 to “weak separation,” and further makes a setting in accordance with the thickness of the recording sheet P within a setting range of the weak separation (step S12). The sheet feeding controlling portion 70 instructs the torque controlling portion 80 such that the strength of separating action which has been set is realized. In accordance with this instruction, the torque controlling portion 80 rotationally drives the DC motor 68 with a relatively weak rotational torque in accordance with the thickness of the recording sheet P. In other words, the separating action of the separating roller 64 is small, and at a strength in accordance with the thickness of the recording sheet P. After this, this sheet feeding controlling portion 70 continues transporting the recording sheets P with the weak separation, and determines whether or not the number of recording sheets P instructed by the sheet feeding start instruction signal has finished being transported (step S9). Once all the transportation is complete (step S9: Yes), operation of the sheet feeding controlling portion 70 finishes.
If the separating action by the separating roller 64 is inadequate when weak separation is set, multiple recording sheets P enter between the transporting roller 63 and separating roller 64, making it impossible to accurately measure the thickness of one recording sheet P. However, setting the separating action of the recording sheets P by the transporting roller 63 and the separating roller 64 to a stronger level will cause greater friction resistance to act on the transporting roller 63, the separating roller 64 and the recording sheets P, thus not only requiring excessive torque in driving the transporting roller 63, but also causing early wear of the rollers. Accordingly, in the first operation example and the second operation example described above, the separating action is set to strong separation only in cases in which the object is to measure the thickness of the recording sheets P. With this strong operation, the separating action is sufficiently strong, and therefore multiple sheets do not project downstream from the nip portion of the transporting roller 63 and the separating roller 64. After the thickness of the recording sheet P is finished being measured, the contact pressure of the separating roller 64 with respect to the thickness of the recording sheet P is optimized within the setting range of weak separation.
The above exemplary embodiments may be varied as follows.
For example, the first operation example and the second operation example can be combined. Specifically, strong separation can be set until the thickness of the recording sheets P is measured for sets of a prescribed number of sheets. For example, if the prescribed number of sheets is 10 sheets, the sheet feeding controlling portion 70 executes the processes of steps S2, S3, S4, S5, S11, and S12 shown in
Moreover, the levels of the strength of separating action are not limited to two levels, and more levels may be provided, making it possible to change from weak strength to strong strength without levels.
When measuring the thickness of the recording sheets P, there is no need to use the separating action with the strongest strength. Simply put, when measuring the thickness of the recording sheets P, a strength other than that of the weakest separating action, of the multiple levels which can be set (one example being the strongest strength), may be set.
In order to make it possible to adjust the separating action by the separating roller 64, a constitution may be used in which rotational torque is applied to the separating roller 64 as described above in a direction which is opposite the transporting direction of the recording sheets P, and this rotational torque is adjusted. Another possibility is changing the contact pressure of the transporting roller 63 on the separating roller 64. Specifically, as shown in
The sheet thickness measuring part may be constituted as follows.
Furthermore, adjustment of the separating action can be realized using a stepping motor 101 and an electromagnetic clutch 102 as shown in
The sheet feeding controlling portion 70 may also be made to measure the thickness of a prescribed number of sheets as in the first operation example, with respect to the recording sheets P which are transported first after checking the opening and closing of the sheet tray 5 with an unillustrated sensor. Moreover, the sheet feeding controlling portion 70 may also be made to measure the thickness as in the second operation example, with respect to the first recording sheet P which is transported after checking the opening and closing of the sheet tray 5 with an unillustrated sensor. This is because the sheet tray 5 being opened or closed indicates a possibility that the type of recording sheet P set in the sheet tray 5 has been changed, and requires resetting the image transfer parameters and so on of the toner image in accordance with the thickness of the recording sheets P after the change.
Similarly, the sheet feeding controlling portion 70 may also be made to measure the thickness of a prescribed number of sheets as in the first operation example, with respect to the recording sheets P which are transported first after measuring that the door to the copier casing which leads to the image forming portion 2 has been opened or closed on the basis of an output signal from an interlock switch. Furthermore, the sheet feeding controlling portion 70 may also be made to measure the thickness as in the second operation example, with respect to the first recording sheet P which is transported after measuring that the door to the copier casing which leads to the image forming portion 2 has been opened or closed on the basis of the output signal from the interlock switch. The door to the copier casing being opened or closed indicates a possibility that a jamming operation of the recording sheets P has been performed, and it is therefore possible that the contact force of the separating roller 64 on the transporting roller 63 has not been optimized for the thickness of the recording sheets P, and as a result double-feeding of the recording sheets P or some other type of problem has occurred. If the opening and closing of the door to the copier casing is used as a timing for measuring the thickness of the recording sheets P, multiple repetitions of the opening and closing of the door during the same copy job or print job may be used as a condition.
Note that a program executed by the sheet feeding controlling portion 70 may be recorded on a recording medium capable of being read by a computer, such as a magnetic storage medium, an optical storage medium, or a ROM, and provided to the sheet feeding controlling portion 70. It is also possible to download such a program to the sheet feeding controlling portion 70 via a network such as the Internet.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The exemplary embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2006-037977 | Feb 2006 | JP | national |