This specification relates generally to the structure of a sheet supplying apparatus.
There is proposed a sheet supplying apparatus externally attached to an image forming apparatus such as an MFP (Multi Function Peripheral). This sheet supplying apparatus is attached to the exterior of one side of the image forming apparatus. Several thousand sheets for printing are stacked on a tray provided for stacking the sheets. Therefore, the sheet supplying apparatus is also called LCF (LARGE-CAPACITY-FEEDER). The tray moves up as the number of stacked sheets decreases by a lift mechanism in the sheet supplying apparatus to keep the top position of the sheets stacked on the tray at certain height. The sheets stacked on the tray are picked up by a pickup roller one by one in order from the sheet at the top position, delivered to a separating and conveying roller pair configured to, for example, prevent double feeding of sheets, and fed to a sheet conveying system in the MFP.
In the sheet supplying apparatus, a sheet stacking section in which a tray capable of moving up and down is provided in a housing-like exterior member which is configured to be drawn out therefrom in a drawer like fashion. When the sheet stacking section is drawn out the tray appears.
When a user refills the sheet stacking section with sheets, in order to supply sheets, a user draws out the sheet stacking section and sequentially stacks up the sheet bundles on the tray.
In the sheet supplying apparatus, a driven portion of the lift up mechanism is engaged with a driving source of the sheet supplying apparatus when the sheet stacking section is fully attached in the housing-like exterior member, i.e., not drawn out. On the other hand, the engagement between the driven portion and the driving source is released when the sheet stacking section is drawn out from the housing-like exterior member.
However, when the sheet stacking section is drawn out from the housing-like exterior member while a large number of sheets are stacked on the tray, the tray with the large number of sheets suddenly falls or drops because of the disengagement between the driven portion and the driving source.
It is possible to use, for example, a centrifugal brake or a helical torsion spring having high torsional torque to prevent a tray with a large number of sheets from a collision against an end of the tray guide member (shock absorption).
However, the centrifugal brake and the helical torsion spring having high torsional torque are generally expensive.
According to an aspect of the present invention, there is provided a method for receiving sheets for a sheet supplying apparatus having a tray on which plural sheets are stackable, a guide mechanism configured to freely guide the tray in an up and down direction, a movement conversion mechanism configured to convert an up and down motion of the tray to a rotational motion, a rotary member rotatably supported around a predetermined rotational axis and comprising a transmitted portion configured to receive a rotational motion converted from the up and down motion of the tray in cooperation with the movement conversion mechanism and a driven portion configured to receive a rotational driving force from a driving source to lift the tray, a cam and slider mechanism having a protrusion which integrally rotates with the rotary member and a cylindrical member through which the rotary member is inserted, the cylindrical member having a spiral groove formed on an inner surface thereof, and configured to convert the rotational motion of the rotary member around the rotational axis to a linear motion of the cylindrical member parallel to the rotational axis, and a compression spring configured to elastically press an end portion of the cylindrical member of the cam and slider mechanism in the rotational axis direction to lift the tray. The method includes converting an up and down motion of the tray to a rotational motion of the rotary member by the movement conversion mechanism, converting the rotational motion of the rotary member around the rotational axis to a linear motion of the cylindrical member parallel to the rotational axis by the rotary member and the cam and slider mechanism, and elastically pressing an end portion of the cylindrical member of the cam and slider mechanism in the rotational axis direction to lift the tray by the compression spring.
An embodiment of the present invention is explained below with reference to the accompanying drawings.
In the embodiments herein, the tray is coupled to a drive in the sheet feeding apparatus, and when the drawer on which the tray is supported is withdrawn to replace the sheets on the tray, the coupling between the tray and the sheet feeding apparatus is decoupled, and the tray falls under its own weight and the weight of any sheets still remaining thereon. To reduce the shock otherwise caused by rapid falling of the tray 106, the drawer includes a shock absorbing mechanism. The shock absorbing mechanism includes a rod shaped rotary member 109 having at least one protrusion 109e extending radially therefrom, and a sleeve like cylindrical member 108 with an internal spiral pitch groove. The cylindrical member 108 is fixed against rotation, and the rotary member is supported at the ends thereof so that it can rotate around its rotational axis. The rotary member 109 extends through the cylindrical member 108, and rotation of the protrusion 109e by rotation of the rotary member 109 causes the cylindrical member 108 to move in the direction of the rotational axis of the rotary member. A coil spring 110 surrounds a portion of the rotary member 109, and is compressed by the axial motion of the cylindrical member 108. One end of a wire rope 111w is windable around one end of the rotary member, extends over a pulley, and is attached at the other end thereof to the tray 106. As the tray 106 falls, the rope unwinds from around the rotary member 109 and causes the cylindrical member 108 to slide axially and compress the spring 110, dampening the falling of the tray 106.
An image forming apparatus according to a first embodiment of the present invention is explained below. First, an image processing system including a sheet supplying apparatus according to this embodiment is explained with reference to
As shown in
The image forming apparatus 2 forms an image on a sheet on the basis of image data acquired by scanning an original or image data received via a network.
The sheet supplying apparatus 1 can supply a large number of sheets (for example, several thousand sheets) as recording media to the image forming apparatus 2.
In
In
As shown in
When a user refills the sheet supplying apparatus 1 with sheets, at first, the user pulls the sheet supplying apparatus 1 away from the image forming apparatus 2 in the Y axis direction as shown in
The sheet stacking section ST has, for example, a base plate 101b, a front cover 103 (shown in
The guide mechanism 101g guides the tray 106 so that the tray 106 can slide freely in an up and down direction (Z axis direction). The guide mechanism 101g is, for example, a linear motion guide. The user can stack plural sheets on the tray 106 guided by the guide mechanism 101g. In
The movement conversion mechanism 111 converts an up and down motion of the tray 106 in the Z axis direction to a rotational motion around the X axis direction. The movement conversion mechanism 111 includes a pulley 111p and a wire rope 111w. One end of the wire rope 111w is connected to an end portion of the tray 106 and the other end of the wire rope 111 is connected across the pulley 111p to a rotational cylindrical body 109d.
The rotary member 109 is a longitudinal member supported rotatably around a predetermined rotational axis which is parallel with X axis. The rotary member 109 is supported rotatably at one end thereof by a side wall 101c extending from one end of the base plate 101b, and at the other end by a side wall (not shown) extending from an opposite end of the base plate 101b.
The rotary member 109 includes the rotational cylindrical body (transmitted portion) 109d at one end thereof in the rotational axis direction. The transmitted portion 109d converts the up and down motion of the tray 106 into rotation of the rotary member, by winding and unwinding the wire rope 111w thereabout in cooperation with the movement conversion mechanism 111. With this structure, the tray 106 will move upwardly as the rotational cylindrical body 109d rotates and thereby winds up the wire rope 111w thereon.
The rotary member 109 also includes a driven portion 109b configured to receive a rotational driving force to lift up the tray 106 from a driving source (not shown) of the sheet supplying apparatus 1 through a coupler 107b and gears 107c, 107d and 107e in a gear train, when the sheet stacking section ST is fully inserted into the casing 101. Each of the coupler 107b and the gears 107c, 107d and 107e is rotatably supported by a shaft 107f, 107g and 107h fixed to a casing 107a which is fixed on the base plate 101b. In this embodiment, the driven portion 109b is, for example, a gear. The rotational driving force is transmitted from the gear 107e to the driven portion 109b as the gear. Here, a coupler of the driving source of the sheet supplying apparatus 1 engages with the coupler 107b when the sheet stacking section ST is fully inserted into the casing 101. However, it is possible to apply other force transmission mechanisms such as a belt drive transmission system and a chain drive transmission system to transmit the driving force from the driving source to the driven portion 109b.
The cam and slider mechanism H converts rotational motion M1 of the rotary member 109 around the rotational axis into linear motion M2 of a cylindrical member (linearly movable member) 108 parallel to the rotational axis.
The cam and slider mechanism H has a protrusion 109e of the rotary member 109 and a cylindrical member 108 (
The compression spring 110 elastically presses on an end portion 108e of the cylindrical member 108 of the cam and slider mechanism H in the rotational axis direction to apply a force to lift the tray 106, and compressed is by sliding movement of the cylindrical member 108 caused by engagement of the protrusions 109e with the grooves 108 c as the rotary member 109 is rotated as the wire rope 111w is pulled by the falling tray 106.
Specifically, the compression spring 110 is a coil spring. Here, a volute spring also can be applied as the compression spring 110 to receive a large load which is larger than the load normal coil spring can accommodate with good space efficiency.
The rotary member 109 is inserted through the compression spring 110 along a spiral center axis of the compression spring 110 (
The rotary member 109 has a plurality of the protrusions 109e provided at different angular positions in a rotational direction of the rotary member 109 (
The cylindrical member 108 includes an anti-rotation bracket 108b secured thereto having a plurality of legs 108b which contact the inner surface of the base plate 101b. The anti-rotation bracket can slide on the inner surface of the base plate 101b, but the portion of the legs thereof which contact the inner surface of the base plate 101 extend in the Y direction whereas the cylindrical member 108 extends in the X direction, and thus the legs 108b prevent the rotation of the cylindrical member 108 around the rotational axis but allow movement thereof in the X direction.
When the sheet supplying apparatus 1 is in use with the image forming apparatus, the tray 106 is moved up by the driving force from the driving source of the sheet supplying apparatus 1 as the number of stacked sheets in the tray 106 decreases to keep the top position of the sheets stacked on the tray 106 at certain height.
The engagement between the coupler 107b (driven portion) and the driving source (not shown) is released when the sheet stacking section ST is drawn out from the casing 101. If the sheet stacking section ST is drawn out from the casing 101 while a large number of sheets are stacked on the tray 106, the tray with the large number of sheets will rapidly fall because the tray 106 is no longer supported in the Z direction as a result of the disengagement between the coupler 107b and the driving source as shown in
Even when the tray 106 with the large number of sheets falls as a result of the disengagement between the coupler 107b and the driving source, the compression spring 110 and the cam and slider mechanism H efficiently absorb the shock because of the weight of the tray 106 and the sheets stacked thereon by both of the elastic pressing force by the compression spring 110 as the compression spring is compressed and a frictional resistance of the cam and slider mechanism H, i.e., they dampen the speed at which the falling tray comes to rest at its lowest position. As shown in
When the drawer is closed and coupler 107b is engaged with the driving source, the rotational force form the driving source can be transmitted to the driven portion 109b to rotate the rotary member 109 through the gears 107c, 107d and 107e in the gear train, and thereby lift the tray 106 with the wire rope 111w and rewind the wire rope 111w on the rotation cylindrical body 109d. With this structure, the tray 106 moves upwardly as the rotational cylindrical body 109d rotates and thereby winds up the wire rope 111w thereon and pull the tray 106 upwardly to keep the top position of the sheets stacked on the tray 106 at certain height. The sheets stacked on the tray are picked up by a pickup roller one by one in order from the sheet at the top position, and delivered to the sheet conveyer 220 in the image forming apparatus 2.
In this embodiment, the end of the compression spring 110 does not always need to touch the end portion 108e of the cylindrical member 108 and the end portion of the stopper 109c. Even when there is a clearance between the end portion of the compression spring 110 and either one of the end portions of the cylindrical member 108 or the stopper 109c in the state that the tray 106 is at the highest position, both end portions of the compression spring 110 will be engaged with both of the end portions of the cylindrical member 108 and the stopper 109c in the state that the tray 106 is at a certain height which is lower than the highest position.
An image forming apparatus according to a second embodiment of the present invention is explained below.
The second embodiment is a modification of the first embodiment. In the following explanation, in this embodiment, components having functions same as those explained in the first embodiment are denoted by the same reference numerals and signs and explanation of the components is omitted. Only point of the second embodiment different from the first embodiment is a structure of the cylindrical member.
In this embodiment, an inclination angle 81 to the Y-Z plane (the plane orthogonally crossing a spiral center axis) of an inclined guide surface 108c1 on which the protrusion 109e contacts when the tray 106 is at around a first height position is smaller than an inclination angle 82 of an inclined guide surface 108c2 on which the protrusion 109e contacts when the tray 106 is at around a second height position lower than the first height position.
By this structure, the moving distance of the cylindrical member 108′ in the rotational axis direction (amount of compression) per a unit rotation angle increases as the tray 106 moves downward. That is, a receiving force to elastically receive a weight of the tray 106 and sheets thereon when the tray 106 is at the second height position is larger than the receiving force when the tray 106 is at the first height position higher than the second height position.
According to the above embodiments, it is possible to efficiently absorb a shock because of the weight of the tray 106 and the sheets stacked thereon by both of the elastic pressing force by the compression spring 110 and a frictional resistance of the cam and slider mechanism H.
In the above embodiments, the sheet supplying apparatus of the present invention is externally attached to an image forming apparatus. However, it is also possible to apply the present invention to a paper feeding cassette which is insertable into a main body of the image forming apparatus.
In the above embodiments, the movement conversion mechanism 111 converts an up and down motion of the tray 106 in the Z axis direction to a rotational motion around the X axis direction with the pulley 111p and a wire rope 111. However, it is also possible to include a gear train into the movement conversion mechanism 111 to convert the up and down motion of the tray 106 to the rotational motion around the X axis direction.
In the above embodiments, the cylindrical member 108 has a spiral groove 108c formed on the inner surface 108q. However, the linearly movable member needs not necessarily be the cylindrical shape. That is, it is possible to form the spiral groove on an inner surface of a linearly movable member having other shape, as long as the groove can be stably guided by the protrusion 109e.
The present invention can be carried out in various forms without departing from main characteristics thereof. The embodiments are merely exemplars in every aspect and should not be limitedly interpreted. The scope of the present invention is indicated by the scope of claims. The text of the specification does not restrict the scope of the invention. All variations and various improvements, alterations, and modifications belonging to the scope of equivalents of the scope of claims are within the scope of the present invention.
This application is a continuation of U.S. patent application Ser. No. 15/260,091, filed on Sep. 8, 2016, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15260091 | Sep 2016 | US |
Child | 15883015 | US |