This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2009-251178, filed on Oct. 30, 2009, the entire contents of all of which are incorporated herein by reference.
The present invention relates to a sheet take out apparatus configured to take out sheets such as marketable securities, and to a sheet processing apparatus including the sheet take out apparatus.
A sheet processing apparatus configured to process sheets such as marketable securities includes a sheet take out apparatus, an inspection device, and a sorting apparatus (see Japanese Patent Application Publication No. 2007-182318, for example). The sheet take out apparatus is configured to take out sheets one by one from sheets collectively set. The inspection device is configured to convey and inspect the sheets taken out by the sheet take out apparatus. The sorting apparatus is configured to sort the sheets based on the inspection result made by the inspection device.
The inspection device determines a type of sheet (hereinafter referred to as a sheet type), a conveyance state of the sheet, an authenticity of the sheet, and a negotiability of the sheet. In the determination of the authenticity, the inspection device determines whether the sheet is an authentic sheet or an inauthentic sheet. In the determination of the negotiability, the inspection device determines whether the sheet is a negotiable sheet or a nonnegotiable sheet. The sorting apparatus includes a stacking device and a banding device. The stacking device stacks the sheets sorted based on the determination result made by the inspection device. The banding device bands each predetermined number of sheets by a paper band after the sheets are stacked in the stacking device.
The sheet take out apparatus includes a supply table on which sheets are stacked; a chamber having an air hole; a take out rotor which has a suction hole and rotates around the outer circumference of the chamber; a separation roller; and multiple conveyor rollers and multiple conveyor belts which convey the taken-out sheets. The chamber is fixed in a predetermined position and the air hole is also fixed in a predetermined position (see, for example, Japanese Patent Application Publication No. 2001-171854). A vacuum pump is connected to the chamber, thereby being capable of attracting a sheet through the air hole of the chamber and the suction hole of the take out rotor. Along with every rotation of the take out rotor, a top sheet is attracted to the suction hole and is taken out accordingly. The separation roller has a suction hole on a side facing the take out rotor. The separation roller rotates in a reverse direction to the rotational direction of the take out rotor. When the take out rotor takes out two sheets overlapping each other, the separation roller separates the second sheet from the first sheet by attracting the second sheet. Thus, the separation roller prevents two sheets from being taken out at the same time.
As far as sheets each have an entirely uniform thickness, a top surface of the sheets stacked on the supply table is not inclined. Thus, the top sheet stably comes into contact with the take out rotor and is stably attracted through the suction hole of the take out rotor. However, when sheets each have a partially uneven thickness, or specifically, when the sheets each have a larger thickness in a rear part in a sheet take out direction than in the other part, the top surface of the stacked sheets is inclined with respect to the horizontal plane because a rear end of the top surface is elevated.
In this case, the take out rotor does not stably come into contact with a take-out-side end portion of the top sheet. Thus, the top sheet is likely to fail to be taken out without being attracted to the take out roller through the suction hole of the take out roller. Accordingly, no sheet is taken out until the take out rotor makes another rotation. This makes a take-out pitch longer, and thus deteriorates a take out processing rate. Moreover, if the take out rotor repeatedly fails to come into contact with sheets, it is determined that the sheets cannot be taken out. Consequently, the operation of the apparatus is stopped.
An object of the present invention is to provide a sheet take out apparatus capable of stably taking out sheets regardless of a stacked state of the sheets and a sheet processing apparatus including the sheet take out apparatus.
An aspect of the present disclosure relates to a sheet take out apparatus containing: a supply table on which sheets are stacked; a detecting portion configured to detect a state of a top surface of the stacked sheets; a cylindrical take out rotor which is rotatably provided so as to face an end portion on a take out side of a top sheet and partially includes a suction hole to attract the sheet, the take out rotor configured to take out the sheets one by one by attracting the end portion on the take out side of the sheet with rotation; a suction portion which is provided inside the take out rotor and includes an air hole to attract the sheet through the suction hole, the suction portion provided so as to allow the air hole to rotationally move between a first opening position and a second opening position, the first opening position having a first distance away from the end portion on the take out side of the sheet, the second opening position having a second distance, which is longer than the first distance, away from the end portion on the take out side of the sheet; and a drive structure configured to rotationally move the suction portion to any of the first opening position and the second opening position based on state information detected by the detecting portion.
Another aspect of the present disclosure relates to a sheet processing apparatus containing: a sheet take out apparatus configured to take out supplied sheets one by one; a sheet inspection device configured to inspect the sheets taken out by the sheet take out apparatus; and a sheet sorting apparatus configured to sort the sheets based on an inspection result made by the sheet inspection device, the sheet take out apparatus including: a supply table on which the sheets are stacked; a detecting portion configured to detect a state of a top surface of the stacked sheets; a cylindrical take out rotor which is rotatably provided so as to face an end portion on a take out side of the top sheet and partially includes a suction hole to attract the sheet, the take out rotor configured to take out the sheets one by one by attracting the end portion on the take out side of the sheet with rotation; a suction portion which is provided inside the take out rotor and includes an air hole to attract the sheet through the suction hole, the suction portion provided so as to allow the air hole to rotationally move between a first opening position and a second opening position, the first opening position having a first distance away from the end portion on the take out side of the sheet, the second opening position having a second distance, which is longer than the first distance, away from the end portion on the take out side of the sheet; and a drive structure configured to rotationally move the suction portion to any of the first opening position and the second opening position based on state information detected by the detecting portion.
A sheet processing apparatus according to an embodiment of the present invention is described below in detail by referring to the drawings. As shown in
The sheet inspection device 130 performs processing such as determination of a sheet type, authenticity, negotiability of the sheets P which are being conveyed by the conveyor device 120 and inspection of a printed condition of the sheet. Also, the sheet inspection device 130 determines sheets which are conveyed in an unusual manner or two sheets which are taken out together as sheets incapable of inspection.
The sheet sorting apparatus 140 sorts the sheet P based on the inspection result made by the sheet inspection device 130. The sheet sorting apparatus 140 includes multiple staking/banding devices 51 to 54 and an eject sheet stacker 160. The staking/banding devices 51 to 54 are arranged in line along the terminal portion of the conveyance path. For example, negotiable sheets are sorted according to each sheet type to be sent to and nonnegotiable sheets are sent to corresponding storing/banding devices. The eject sheet stacker 160 is provided in the end of the conveyance path of the conveyor device 120, and the ejected sheets are stacked in the eject sheet stacker 160.
The stacking/banding device 51 includes a bladed wheel 51a, a stacker 51b, a banding portion 51c, and a chute portion 51d. The bladed. wheel 51a rotates in synchronization with the conveyance of the sheet P The bladed wheel 51a captures the conveyed sheet P and stacks the sheet P in the stacker 51b. In the stacker 51b, negotiable sheets or nonnegotiable sheets are temporarily stacked based on the inspection result made by the sheet inspection device 130. The banding portion 51c bundles the stacked sheets P in the stacker 51b, by using a paper band when the number of the stacked sheets P becomes 100, for example. The chute portion 51d captures the bundle of the 100 sheets (hereinafter referred to as a bundle H) to send out the bundle H in the C direction to a conveyor 170.
The stacking/banding devices 52 to 54 have the same configuration as the stacking/banding device 51. In the present embodiment, the stacking/banding devices 51 and 52 stack and bundle negotiable sheets, while the stacking/banding devices 53 and 54 stack and bundle nonnegotiable sheets.
As shown in
The supply box 5 is formed in a box shape having a rectangular cross section corresponding to the shape of the sheet P. The supply box 5 has a substantially horizontal bottom wall 5a, four side walls 5b which are substantially vertically set up, and a top end opening. One end of the top end opening, for example, the right end in
A guide plate 6 is provided above the supply table 7 and in an upstream side, in the take out direction, of the take-out port 5c. The guide plate 6 is positioned so as to face a top sheet Pa to guide the sheets P to the take out rotor 2. The surface of the top sheet Pa is the top surface of the sheets P. The guide plate 6 restricts the upward movement of the sheets P and keeps the stacked state of the sheets P. The guide plate 6 has substantially the same size as the sheets P in the width direction of the sheets P. In addition, the guide plate 6 has a detection through-hole 6h formed in one portion thereof.
The detecting portion 3 detects the state (position) of the top sheet Pa and the stacked state of the sheets P, particularly, an inclination of the top sheet Pa. Note that if the top sheet Pa is inclined, the tip end, in the take out direction, of the top sheet Pa is less likely to come into close contact with the take out rotor 2 when the top sheet Pa comes into contact with the guide plate 6. The detecting portion 3 has a first sensor 3a and a second sensor 3b which are provided above the sheet P and are spaced apart from each other along the take out direction d1. The first and second sensors 3a and 3b are, for example, reflection sensors. The first and second sensors 3a and 3b detect state information (positional information) in two points on the top sheet Pa, the two points spaced apart from each other along the take out direction d1.
The first sensor 3a emits light to the end portion, on the take-out port 5c side, of the top sheet Pa through the through-hole 6h of the guide plate 6 and then detects light reflected by the sheet P through the through-hole 6h. The second sensor 3b emits light to a rear end side, in the take out direction d1, of the top sheet Pa and then detects light reflected by the sheet Pa.
As shown in
The take out rotor 2 integrally includes a cylindrical main body 2a, an end wall 2b to block one end of the main body 2a, and a cylindrical supporting portion 2c projecting from the end wall 2b so as to be coaxial with the main body 2a. The main body 2a has multiple suction holes 2h formed in portions in the circumferential direction in, for example, a matrix form of three columns and five rows.
The take out rotor 2 is fixed in a tip portion 33 of the rotational axis 21 and is caused to rotate by the rotational axis 21. The rotational axis 21 extends in a direction substantially parallel with the width direction of the stacked sheets P. A housing 22 is fixed to a support frame 41 and an unillustrated bearing is provided inside the housing 22. A drive motor 24 is attached to a support frame 42. The support frames 41 and 42 are provided so as to face each other and be spaced apart from each other. The support frames 41 and 42 are connected with each other through multiple connection rods 43 and 44. The center portion, in the longitudinal direction, of the rotational axis 21 is rotatably supported by the bearing inside the housing 22. The base end of the rotational axis 21 is connected with an output axis of the drive motor 24 through a coupling 23.
The supporting portion 2c of the take out rotor 2 is fitted into and fixed to the outer circumference of the tip portion 33 of the rotational axis 21. Key ways are formed respectively in the inner circumferential surface of the supporting portion 2c and in the outer circumferential surface of the tip portion 33, and a key 34 is thus fitted into the key ways. In this manner, the take out rotor 2 is fixed to the rotational axis 21 so as to be rotatable together with the rotational axis 21. The tip portion 33 of the rotational axis 21 projects to the inside of the main body 2a of the take out rotor 2 and is positioned so as to be coaxial with the main body 2a. Two ball bearings 25 are fitted into the outer circumference of the tip portion 33. These ball bearings 25 are positioned and fixed by washers fastened by bolts to the tip end of the rotational axis 21. A chamber 20 to be described later is fitted into the outer ring of the ball bearings 25. Accordingly, the rotational axis 21 is supported by the ball bearings 25 and the bearing inside the housing 22. The rotational axis 21, the housing 22, the coupling 23, and the drive motor 24 constitute a first drive structure 111 that rotates the take out rotor 2.
When the drive motor 24 operates, the rotational axis 21 and the take out rotor 2 rotate through the coupling 23. The take out rotor 2 rotates in the state where the outer circumferential surface of the main body 2a is in contact with the top sheet Pa. For a predetermined period of time during the rotation of the take out rotor 2, the suction holes 2h face the top sheet Pa. The take out rotor 2 rotates in the state where the top sheet Pa is attached to the take out rotor 2, so that the top sheet Pa can be taken out one by one from the sheets P in the supply box 5.
As shown in
The outer tube 20a has an air hole 20h formed therein. The air hole 20h opens throughout almost the entire length, in the axial direction, of the outer tube 20a and opens in a predetermined angular range in the circumferential direction of the outer tube 20a. A guide groove 20r formed in the outer circumferential surface of the outer tube 20a extends throughout the entire length in the axial direction of the outer tube 20a and extends in a predetermined angular range in the circumferential direction of the outer tube 20a. One portion of the guide groove 20r is formed so as to overlap one end portion of the air hole 20h. An exhaust opening 20e for exhausting air inside the suction space in the chamber 20 is formed in the side wall 20d of the chamber 20.
A drive shaft 35 is fixed to the side wall 20d of the chamber 20 and extends coaxially with the chamber 20 from the side wall 20d. The chamber 20 is provided inside the main body 2a of the take out rotor 2 so as to be coaxial with the take out rotor 2. The inner tube 20b of the chamber 20 is fitted into the outer rings of the ball bearings 25 and is rotatably supported by these ball bearings 25.
The drive shaft 35 is supported by a support frame 45 and extends coaxially with the rotational axis 21 of the take out rotor 2. An axle bearing 26 is attached to the support frame 45 and is positioned on the outer circumference side of the drive shaft 35. One bearing washer of the axle bearing 26 is fixed to the support frame 45 and the other bearing washer is fitted into the outer circumference of the drive shaft 35 in the state of being in contact with the side wall 20d of the chamber 20. Accordingly, the weight of the chamber 20 in the thrust direction is supported by the axle bearing 26. Note that the support frame 45 faces the support frame 41 in parallel therewith and is spaced apart from the support frame 41. The support frame 45 is connected with the support frame 41 through a connection rod 46.
The drive shaft 35 extends through a through-hole formed in the support frame 45, and has a drive pulley 27 attached in a projected end of the drive shaft 35. A drive belt 28 is wound around the drive pulley 27 and the rotational axis of the drive motor 71. Accordingly, by operating the drive motor 71 to rotate the drive shaft 35 through the drive belt 28 and the drive pulley 27, the chamber 20 can be rotated by a predetermined angle inside the take out rotor 2.
An exhaust pipe 36 is attached to the support frame 45 and extends in a direction substantially parallel with the drive shaft 35. One end of the exhaust pipe 36 is connected with a vacuum pump 72 through a connector 37 and a pipe arrangement 31. The other end of the exhaust pipe 36 closely faces the exhaust opening 20e formed in the side wall 20d of the chamber 20. By operating the vacuum pump 72, the inside of the chamber 20 is evacuated through the pipe arrangement 31, the exhaust pipe 36, and the exhaust opening 20e, so that outer air is vacuumed from the air hole 20h of the chamber 20. Note that the exhaust opening 20e is formed in an arc-shaped long hole so as to always face an end of the exhaust pipe 36 even when the chamber 20 rotates within a predetermined angular range. For this reason, the suction portion 1 attracts the sheet P through the air hole 20h and the suction holes 2h of the take out rotor 2, thereby being capable of attracting the sheet P to the take out rotor 2.
As shown in
When the suction portion 1 is in the first opening position shown in
As shown in
When the suction portion 1 is in the second opening position, the one end 20i of the air hole 20h has a second distance, which is longer than the first distance, away from the end portion on the take out side of the sheet Pa. The position of the sheet Pa facing the one end 20i in the second opening position is closer to the rear end side of the sheet Pa than the position of the sheet Pa facing the one end 20i in the first opening position.
On the other hand, when the suction portion 1 is in any of the first and second opening positions, because of the existence of a regulation member 30, the other end of the air hole 20h, i.e., an end farther from the take-out port 5c in the take out direction is positioned in such a location that the line passing the central axis A1 and the other end is inclined at a third angle θ3 in the take out direction d1 of the sheet P with respect to the perpendicular.
As shown in
As described above, when the chamber 20 is shifted to the first opening position, the air hole 20h opens in the range from the first angle θ1 to the third angle θ3. Similarly, when the chamber 20 is shifted to the second opening position, the air hole 20h opens in the range from the second angle θ, which is larger than the first angle θ1, to the third angle θ3. Then, the take out rotor 2 rotates around the outer circumference of the chamber 20 and thus attracts the sheet Pa when the suction holes 2h meet with the air hole 20h of the chamber 20. The take out rotor 2 rotates with the sheet Pa attracted thereto to take out the attracted sheet Pa in the take out direction d1. Then, the take out rotor 2 further rotates and loses the suction force when the suction holes 2h come apart from the air hole 20h of the chamber 20. At this time, the sheet P comes off the take out rotor 2 and is sent toward conveyor rollers to be described later.
As shown in
The third sensor 14 is provided in the vicinity of the through-holes 29a and 29b so as to face the outer circumferential portion of the shield plate 29. The third sensor 14 detects the through-holes 29a and 29b to thus detect the rotational position of the chamber 20. For example, the third sensor 14 is formed of a photo-interrupter. When the chamber 20 rotationally moves to the first opening position and the shield plate 29 rotationally moves in conjunction with the chamber 20, the third sensor 14 detects the through-hole 29a corresponding to the first opening position. Similarly, when the chamber 20 rotationally moves to the second opening position and the shield plate 29 rotationally moves in conjunction with the chamber 20, the third sensor 14 detects the through-hole 29b corresponding to the second opening position.
As shown in
One end, in the axial direction, of the separation roller 8 is fixed in a drive shaft 38. The drive shaft 38 is rotatably supported by an unillustrated bearing which is provided inside a housing 39 fixed to the support frame 41. The drive shaft 38 is connected with a drive motor through an unillustrated coupling. Accordingly, when the drive motor operates, the separation motor 8 is caused to rotate.
A chamber 61 is inserted into the inside of the separation roller 8. The chamber 61 has an unillustrated air hole facing the take out rotor 2. The chamber 61 is fixed to a support frame 47 and is supported by the support frame 41 through the support frame 47 and a stay 48.
The chamber 61 has a vacuum pump 73 connected thereto through a connector 62 and a pipe arrangement 32. The vacuum pump 73 evacuates the inside of the chamber 61, and thus the sheet P is attracted through the air hole of the chamber 61 and the suction holes 8h of the separation roller 8. In this manner, when the take out rotor 2 takes out two sheets P overlapping each other at the same time, the separation roller 8 attracts the second sheet P and sends the attracted sheet P to a direction reverse to the take out direction d1. As a result, the second sheet P can be separated from the first sheet P.
As shown in
In the conveying path, the conveyor belts 11 and 12 come into contact with each other. In the conveyor portion 13, the conveyor belts 11 and 12 sandwich the sheet P taken out by the take out rotor 2 therebetween to convey the sheet P in a conveying direction d2.
The conveyor roller 10 is rotatably supported by support frames 49. One support frame 49 is supported by the support frame 45, while the other support frame 49 is supported by the connection rod 46.
As shown in
As shown in
As shown in
The second sensor 3b is turned on when the height of the rear end portion of the top sheet Pa is equal to or higher than a reference value. On the other hand, the second sensor 3b is turned off when the height of the rear end portion of the top sheet Pa is lower than the reference value. When the second sensor 3a is turned off, the controller 15 sets the chamber 20 to the first opening position. On the other hand, when the second sensor 3b is turned on, the controller 15 sets the chamber 20 to the second opening position.
The first and second sensors 3a and 3b only need to detect the height of the top sheet Pa every time the number of sheets P thus taken out reaches 20, for example. In this case, the supply table 7 only needs to ascend or stop ascending every time the number of sheets P thus taken out reaches 20.
The controller 15 calculates a speed of taking out the sheet P based on the positional information of the tip end of the sheet P detected by the detecting portion 4. The controller 15 controls a rotating speed V1 of the take out rotor 2 based on the calculated take out speed. When the sheet P is taken out at a constant speed, the controller 15 sets the rotating speed V1 of the take out rotor 2 to be constant. In the case of a constant gap take out where the sheet P is taken out in such a manner that a gap between two consecutive sheets P becomes constant, the controller 15 increases or decreases the rotating speed V1 of the take out rotor 2 to thus accelerate or decelerate the rotation of the take out rotor 2. Note that a rotating speed V2 of the separation roller 8 is set to be constant.
Hereinafter, a description will be give of a method of taking out a sheet by the sheet take out apparatus 110 configured as described above. In particular, the control method of the controller 15 is described. Refer to
After that, in ACT2, the controller 15 determines if the second sensor 3b is turned on. When the second sensor 3b is turned on, in ATC3, the controller 15 operates the drive motor 71 and rotationally moves the chamber 20 to the second opening position. Thereafter, in ACT5, the controller 15 operates the drive motor 24 to start the rotation of the take out rotor 2. At the same time, the controller 15 controls the separation roller 8 to rotate at a constant speed and controls the vacuum pump 72 for suction portion 1 and the vacuum pump 73 for the separation roller to operate. In this manner, suction is started.
When the second sensor 3b is not turned on (in ACT2), the controller 15 operates the drive motor 24 to move the chamber 20 to the first opening position. After that, the step proceeds to ACT5. At this time, the controller 15 detects the first and second opening positions of the chamber 20 based on detection signals from the third sensor 14, so that the drive motor 24 is controlled to be driven or stopped.
As a result, the end portion on the take-out port 5c side of the top sheet Pa is attracted to the take out rotor 2. Then, the sheet Pa is taken out from the supply box 5 by the rotating take out rotor 2 and is sent to the conveyor belts 11 and 12.
After that, in ACT6, as shown in
When the first sensor 3a is not turned on (in ACT6), in ACT8, the controller 15 controls the supply table 7 to ascend. When the first sensor 3a is switched on, the controller 15 causes the supply table 7 to stop ascending. In this manner, the top sheet Pa of the stacked sheets P is set again to a height position which allows the sheet Pa to be taken out. After that, the step proceeds to ACT7.
As shown in
When the second sensor 3b is turned off (in ACT7), the controller 15 moves the chamber 20 to the first opening position in ACT11. After that: the step proceeds to ACT10. When any sheet P to be taken out is left inside the supply box 5, the actions ACT6 onward are repeated. When there is no more sheet P left to be taken out, in ACT12, the controller 15 stops the rotation of the take out rotor 2 to finish the operation of taking out the sheet P.
With the sheet processing apparatus 100 configured as described above, the capability of the suction portion 1 of the sheet take out apparatus 110 to attract a sheet can be adjusted according to the stacked state of the sheets P to be taken out, in particular, according to the inclination of the top sheet Pa. In other words, in the case where the top sheet Pa is inclined such that the rear end side of the top sheet Pa is higher than the end portion on the take out side of the sheet, the chamber 20 is shifted to the second opening position to widen the region of the air hole facing the end portion on the take out side of the sheet toward the rear end side of the sheet. As a result, the sheet P can be securely attracted to and taken out by the take out rotor 2.
For this reason, the sheet P can be securely attracted to and stably taken out by the take out rotor 2 irrespective of whether or not the stacked sheets P on the supply table 7 have an inclination, or a higher part. Consequently, even when the sheets P each have an uneven thickness, the sheet P can be stably taken out at a high speed without decreasing the processing speed of taking out the sheets P in the course of taking out the sheets from when the supply box 5 is filled with the sheets P to when almost no sheet P is left in the supply box 5.
The opening state of the air hole 20h of the chamber 20 can be easily shifted with a simple method of only rotating the chamber 20 at a predetermined angle and with a simple configuration as such. Thus, the sheet take out apparatus 110 can be prevented from becoming large in size.
Furthermore, the regional end on the take out side of the air hole 20h is regulated to the same position by the regulation member 30 even when the chamber 20 rotationally moves to the first opening position or the second opening position. Accordingly, the sheet taken out can be separated from the take out rotor 2 in the same position and be sent to the conveyor belts 11 and 12.
Accordingly, there can be obtained the sheet take out apparatus 110 capable of stably taking out the sheet P regardless of the stacked state of the sheets P and the sheet processing apparatus 100 including the sheet take out apparatus 110.
Note that the invention is not limited to the embodiment described above and can be embodied in the practical phase by modifying the portions of the invention without departing from the scope of the invention. In addition, various embodiments can be achieved by properly combining the multiple portions disclosed in the embodiment described above. For example, some portions may be omitted from all the portions disclosed in the embodiment.
For example, as shown in
For example, in the second opening position, one end 30i of the regulation member 30 is positioned so that the line passing a central axis A1 of the chamber 20 and the one end 30i is inclined at a second angle θ2 toward the rear end of the sheet Pa with respect to the perpendicular passing the central axis A1 and a take-out port 5c.
Also, the types of first and second sensors 3a and 3b and the detecting method using the first and second sensors 3a and 3b are not limited to those described in the embodiment, and various modification can be made. For example, a detecting portion 3 may include three or more sensors. Accordingly an accuracy of detecting positional information on a top surface of sheets P can be improved.
Number | Date | Country | Kind |
---|---|---|---|
2009-251178 | Oct 2009 | JP | national |