The invention relates to a sheet transport system for moving a sheet in a transport direction x while adjusting a position of the sheet in a lateral direction z normal to the transport direction x to a target position, the system comprising first and second pinch roller sets spaced apart from one another in the transport direction x, each pinch roller set comprising two pairs of pinch rollers spaced apart from one another in the lateral direction z, each pair forming a nip for pinching and driving the sheet with an individually controllable speed.
Sheet transport systems of this type are typically employed in printers or copiers or, more generally, in sheet processing apparatus for moving media sheets through successive processing stations of the apparatus.
In order to obtain a high print quality in a printer, for example, it is necessary that the sheet transport system is not only capable of supplying the sheets at the correct timings to the correct positions in the transport direction x but also to correct possible deviations of the sheets in the lateral direction z by re-adjusting the sheets to the target position. In most cases, it is also required that the sheet transport system is capable of correcting possible skew errors of the sheets by rotating the sheets such that their leading and trading edges are exactly aligned in the lateral direction z.
In known sheet transport systems, the correction of y-position errors generally requires specific moving means for moving the sheets in the lateral direction. This makes the sheet transport system complicated and expensive.
It is therefore an object of the invention to provide a sheet transport system that has a simple construction and is nevertheless capable of controlling the y-positions of the sheets.
In order to achieve this object, according to the invention, a sheet transport system for moving a sheet in a transport direction x while adjusting a position of the sheet in a lateral direction z normal to the transport direction x to a target position, the system comprising first and second pinch roller sets spaced apart from one another in the transport direction x, each pinch roller set comprising two pairs of pinch rollers spaced apart from one another in the lateral direction z, each pair forming a nip for pinching and driving the sheet with an individually controllable speed. The sheet transport system further comprises a detection system for detecting a position of the sheet in the lateral direction z while the sheet is pinched by the first pinch roller set, and a control system configured for carrying out the following actions:
In the system according to the invention, the z-position of a sheet can be controlled without any specific moving means for moving the sheet in z-direction, simply by appropriately controlling the pinch rollers that are responsible for the transport of the sheet in the transport direction x. The invention takes advantage of the fact that a rotation of the sheet can be induced by driving the pinch rollers on the left and right sides of the sheet transport path with differential speed, and that such a rotation of a sheet induces a lateral movement of the leading part of the sheet that is already located downstream of the pinch roller set that induces the rotation. Consequently, the rotation can be controlled such that the leading edge of the sheet reaches the second pinch roller set in a corrected z-position. In general, however, this correction of the z-position will also lead to an unwanted change of the skew angle of the sheet. Therefore, according to the invention, the second pinch roller set is used for rotating the sheet again, this time in order to correct the skew angle. By appropriately controlling the time period in which the second rotation is performed, it can be achieved that the z-position of the center of the sheet is left unchanged in this second rotation so that, eventually, the sheet will have the correct z-position and also the correct skew angle.
More specific optional features of the invention are indicated in the dependent claims.
In one embodiment, the system can also be utilized for correcting a possible initial skew error of the sheet.
During the correction process for the z-position and/or the skew angle, the speed of the pinch rollers may also be controlled such that a possible x-position (or timing) error will also be corrected.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the present invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
The present invention will now be described with reference to the accompanying drawings, wherein the same reference numerals have been used to identify the same or similar elements.
In
The sheet transport system comprises a first pinch roller set 10 and a second pinch roller set 12 each of which comprises two pairs 14, 16, 18, 20 of pinch rollers. As is shown in
A sheet that arrives from below in
Edge detectors 26 are arranged in the vicinity of each pinch roller pair 14, 16 of the first pinch roller set 10 for detecting the timings at which leading and/or trailing edges of the sheets move past the detectors.
An edge detector 28 in the form of a linear detector array is provided at a location between the first and second pinch roller sets 10, 12 for detecting a position of a lateral edge of the sheet in a lateral direction z. Thus, the edge detector 28 can detect any possible z-position error of the sheets passing through. Target positions zL and zR for the left and right edges of the sheets have been indicated by dashed lines in
The edge detectors 26 and 28 are electronically connected to a control system 30 that contains a processor for controlling the pinch roller pairs 14, 16, 18 and 20. It will be observed that the speeds of rotation of the pinch rollers 22 can be controlled independently for each of the four pinch roller pairs.
In the situation shown in
For a moment, it shall now be assumed that the pinch roller pair 16 is driven to advance the sheet with a speed Δv in positive x-direction whereas the pinch roller pair 14 is driven to move the sheet with a speed having the same absolute value Δv, but in negative x-direction. As a consequence, the sheet would be rotated counter-clockwise about a rotation center point C in the middle between the pinch roller pairs 14 and 16. This rotation has been symbolized in
In practice, the sheet is of course advanced in positive x-direction with a certain speed vT, symbolized by a dashed arrow in
At a certain point C′ located on the axis of the pinch roller pairs 14 and 16, the translation vector and the rotation vector cancel each other, so that this point of the hypothetical sheet would be at rest. Thus, the movement resulting from a superposition of the translational movement with speed vT and the rotation is again a rotation, but with a centre at the point C′, as has been symbolized by faint dashed arrows in
In this stage, a certain reference point 32 may be defined on the leading part of the sheet, i.e. the part of the sheet that is already downstream of the first pinch roller set 10. The exact position of the reference point 32 on the sheet is not critical. In the example shown, the reference point is located on the right edge of the sheet and in some distance from the leading edge.
It is now possible to calculate an angular speed of the further rotation about the point C′, i.e. a suitable differential speed of the pinch roller pairs 14 and 16, such that the reference point 32 will reach the target position zR at a time at which the sheet is not yet pinched by the second pinch roller set 18, 20. The position 24d in
It will be observed that the differential speed of the pinch roller pairs 18 and 20 results in a rotation about a center point that is located on the axis of the second pinch roller set 12 (on the right side in
It will be observed that, in the process described above, there is still some freedom of choice concerning the translational speed vT in the various stages of the process. This freedom may optionally be utilized for correcting also an x-position error or timing error that may be detected by means of the edge detectors 26 in
Of course, the edge detectors 26 are also capable of detecting a skew angle of the sheet by detecting the trailing edge of the sheet. This possibility may be utilized for example for checking the result of the first rotation when the sheet moves from the position 24d in
Although specific embodiments of the invention are illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations exist. It should be appreciated that the exemplary embodiment or exemplary embodiments are examples only and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing summary and detailed description will provide those skilled in the art with a convenient road map for implementing at least one exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope as set forth in the appended claims and their legal equivalents. Generally, this application is intended to cover any adaptations or variations of the specific embodiments discussed herein.
It will also be appreciated that in this document the terms “comprise”, “comprising”, “include”, “including”, “contain”, “containing”, “have”, “having”, and any variations thereof, are intended to be understood in an inclusive (i.e. non-exclusive) sense, such that the process, method, device, apparatus or system described herein is not limited to those features or parts or elements or steps recited but may include other elements, features, parts or steps not expressly listed or inherent to such process, method, article, or apparatus. Furthermore, the terms “a” and “an” used herein are intended to be understood as meaning one or more unless explicitly stated otherwise. Moreover, the terms “first”, “second”, “third”, etc. are used merely as labels, and are not intended to impose numerical requirements on or to establish a certain ranking of importance of their objects.
The present invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
20169913.9 | Apr 2020 | EP | regional |