Wire grid rack systems are a type of storage arrangement that includes a number of vertical posts collectively supporting wire grid racks. One type of configuration of wire grid rack systems involves modular “knock-down” storage arrangements and these have seen extensive use in both retail and residential environments. Such modular “knock-down” storage arrangements are typically comprised of generally four-sided shelves made up of intersecting wire rods, with each shelf separated and supported by a post at each corner above and below the respective shelf. The user assembles the shelving system by engaging a set of four posts to each of the four corners of a shelf, placing a second shelf on top of the posts, engaging another set of posts to the second shelf, and so on until the shelving system has the desired number of shelves. The shelving system can be disassembled (i.e., “knocked down”) merely by disengaging the posts from the shelves, and the posts and shelves can then be stored in a compact manner (e.g., in a box) for storage or transportation.
These modular “knock-down” storage arrangements have become popular because they are typically easy to assemble into an initial storage configuration. However, it is desirable that users can re-configure such modular “knock-down” storage arrangements to more suitably store a different mix of items at a later time after the initial set up. Additionally, it is desirable that users can more fully utilize the available space occupied by the storage arrangement via, for example, providing opportunities to store items in unoccupied areas within the confines or “footprint” of the storage arrangement.
One drawback in re-configuring modular “knock-down” storage arrangements from their initial storage configuration to another configuration is that it is often necessary to at least partially disassemble the storage arrangement and this can involve substantial effort and/or careful use of tools, U.S. Pat. No. 6,364,139 to Chen notes that some conventionally known sectional racks of this type require fastening tools to erect or disassemble the racks. However, according to U.S. Pat. No. 5,364,139 to Chen, improvements have been made to such sectional racks and fastening means and tools are no longer needed in the erection and disassembling thereof. Reference is had to
Thus, storage arrangements have been proposed that ease the transition from their initial storage configuration to another configuration. Still more flexibility has been sought, however, so that the variety of items that can be stored, and the accessibility of such stored items, can be increased. To this end, U.S. Pat. No. 7,325,697 to Lim et al notes that storage bins can be used to hold articles and objects, with the storage bins placed on the shelves of a modular “knock-down” storage arrangement in an organized manner. However, according to U.S. Pat. No. 7,325,697 to Lim et al, the use of conventional storage bins has certain disadvantages including, for example, the disadvantage that conventional storage bins are not secured to the shelves, so that a storage bin might slide about the shelf on which it is supported, especially if it is advertently pushed or tipped by a user or another object. This pushed or tipped storage bin may fall off a shelf, causing damage to the contents and possible injury to a person. U.S. Pat. No. 7,325,697 to Lim et al discloses a storage bin that can be engaged to the shelves of a modular “knock-down” storage arrangement in a manner which allows for safe and convenient access to the contents stored in the storage bin.
Despite the continued improvements to the above-described storage arrangements, a need exists for a shelf assembly that can be easily assembled and that can be easily installed at different heights without the need for any tools.
The present invention solves the above-mentioned problems by providing a shelf assembly for conveniently storing items on a storage arrangement such as, for example, a wire rack grid system.
It is one object of the present invention to provide a new and improved shelf assembly for conveniently storing items on a storage arrangement which may be easily and efficiently manufactured.
It is a further object of the present invention to provide a new and improved shelf assembly for conveniently storing items on a storage arrangement which permits the items to be readily stored at convenient access locations such as, for example, at or generally near the eye level of a user.
It is an additional object of the present invention is to provide a new and improved shelf assembly that permits stored items while still retained by the shelf assembly, to be temporarily re-positioned to another location on a storage arrangement so that a user can readily view, and readily have access to, the stored items.
The present invention provides a fixed location assembly whereby an item can be supported at a desired fixed location on a support post. The supported items can be any desired item such as, for example, a shelf, a pivoting shelf door, or a support hook. One configuration of the fixed location assembly of the present invention is a shelf assembly that advantageously provides a structure for conveniently storing items on a storage arrangement such as, for example, a wire rack grid system.
According to one aspect of the present invention, there is provided a shelf assembly disposable on a support post, the support post being of the type having an outer surface and a plurality of channels located at spacings along the outer surface. The shelf assembly includes a shelf arm and a first retaining element, the first retaining element having a pole axis and including a channel engaging protrusion, the channel engaging protrusion having a radial extent extending perpendicularly to the pole axis and being compatibly configured with respect to a channel of the support post such that the channel engaging protrusion extends radially inward into a respective channel of the support post in an installed disposition of the shelf assembly. The shelf assembly also includes a first gap sleeve, the first gap sleeve being connected to the channel engaging protrusion, and the channel engaging protrusion has a first angular end, a second angular end, and an angular body portion between the first and second angular ends, whereupon the angular body portion of the channel engaging protrusion delimits a partial circumference angular perimeter and the first and second angular ends of the channel engaging protrusion delimiting an angular gap. In further connection with the shelf assembly, the first gap sleeve has a first angular end, a second angular end and an angular body portion between the first and second angular ends, whereupon the angular body portion of the first gap sleeve delimits a partial circumference angular perimeter and the first and second angular ends of the first gap sleeve delimit an angular gap. The angular gaps of the channel engaging protrusion and the first gap-sleeve are at least partially angularly co-incident with one another and the shelf arm and the first retaining element are securable to one another in an assembled condition of the shelf assembly. The shelf arm is configured to provide a selected one of a shelf surface on which an object can be placed that is to be supported by the shelf assembly or a structure to be associated with a shelf surface on which an object can be placed that is to be supported by the shelf assembly. The shelf arm is securable to the first retaining element in the installed disposition of the shelf assembly and the shelf arm and the first retaining element are operatively associated with one another in the installed disposition of the shelf assembly such that a load imposed on the shelf arm by a supported object urges the angular ends of the channel engaging protrusion of the first retaining element to move toward one another.
According to one feature of the one aspect of the present invention, the shelf assembly also includes a second retaining element.
The shelf assembly of the present invention advantageously provides a structure for conveniently storing items on a storage arrangement such as for example, a wire rack grid system. The shelf assembly of the present invention permits convenient storage of items in that, for example, the shelf assembly of the present invention permits items to be readily stored at convenient access locations such as, for example, at or generally near the eye level of a user. Also, the shelf assembly of the present invention can be configured to permit the stored items, while still retained by the shelf assembly, to be temporarily re-positioned to another location on a storage arrangement so that a user can readily view, and readily have access to, the stored items. For example, the shelf assembly of the present invention can be configured as a swing out drawer that can be pivotally mounted on a vertical post of a storage arrangement, whereupon the swing out drawer can be pivoted to an item display position at which the stored items, while still being retained by the swing out drawer, can be readily viewed and accessed by a user. Moreover, many versions of the shelf assembly of the present invention can be easily installed on a storage arrangement such as, for example, a wire rack grid system, without the need for tools. Additionally, with particularly reference to installing the shelf assembly of the present invention on a wire rack grid system, there will often be no need to disassemble or remove any of the already-installed wire grid racks in order to install the shelf assembly of the present invention on a support post.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims, and drawings.
The present invention provides a fixed location assembly whereby an item can be supported at a desired fixed location on a support post. The supported items can be any desired item such as, for example, a shelf, a pivoting shelf door, or a support hook. One configuration of the fixed location assembly of the present invention is a shelf assembly that advantageously provides a structure for conveniently storing items on a storage arrangement such as for example, a wire rack grid system. As seen in
As seen in
The shelf assembly of the present invention advantageously provides a structure for conveniently storing items on a storage arrangement such as, for example, a wire rack grid system. The shelf assembly of the present invention permits convenient storage of items in that, for example, the shelf assembly of the present invention permits items to be readily stored at convenient access locations such as, for example, at or generally near the eye level of a user. Also, the shelf assembly of the present invention can be configured to permit the stored items, while still retained by the shelf assembly, to be temporarily re-positioned to another location on a storage arrangement so that a user can readily view, and readily have access to, the stored items. For example, the shelf assembly of the present invention can be configured as a swing out drawer that can be pivotally mounted on a vertical post of a storage arrangement, whereupon the swing out drawer can be pivoted to an item display position at which the stored items, while still being retained by the swing out drawer, can be readily viewed and accessed by a user. Moreover, many versions of the shelf assembly of the present invention can be easily installed on a storage arrangement such as, for example, a wire rack grid system, without the need for tools. Additionally, with particularly reference to installing the shelf assembly of the present invention on a wire rack grid system, there will often be no heed to disassemble or remove any of the already-installed wire grid racks in order to install the shelf assembly of the present invention on a support post.
An exemplary version of the shelf assembly of the present invention will now be described and, solely for the purpose of illustration, this exemplary version of the shelf assembly of the present invention will be described with respect to a representative wire rack grid system, it being understood that the shelf assembly of the present invention is also equally suitable for installation on another type of storage arrangement. As seen in
The first channel engaging protrusion 216 has a first angular end, a second angular end, and an angular body portion between the first and second angular ends, whereupon the angular body portion of the first channel engaging protrusion 216 delimits a partial circumference angular perimeter and the first and second angular ends of the first channel engaging protrusion 216 delimiting an angular gap CH-GAP.
The gap sleeve 218 has a first angular end 220, a second angular end 222, and an angular body portion 224 between the first and second angular ends, whereupon the angular body portion 224 of the gap sleeve 218 delimits a partial circumference angular perimeter and the first and second angular ends 220, 222 of the gap sleeve 218 delimits an angular gap SL-GAP. The angular gap CH-GAP of the first channel engaging protrusion 216 and the angular gap SL-GAP of the gap sleeve 218 are at least partially angularly co-incident with one another. The gap sleeve 218 is connected to the first channel engaging protrusion 216 in an assembled condition of the shelf assembly 210 and any manner of connection is suitable to the extent that the gap sleeve 218 and the first channel engaging protrusion 216 are so connected that selected forces applied to the gap sleeve 218 enhance the stability and retention strength of the first channel engaging protrusion 216 with respect to a support post 112, as will be described in more detail herein. For example, the gap sleeve 218 and the first channel engaging protrusion 216 can be integrally formed as a single unit via any suitable forming process such as, for example, casting, extrusion, molding, or stamping, and can be integrally formed of any suitable material such as, for example, a metal, alloy, plastic, or polymer material.
Each of the shelf arms 212A, 212B is securable to the retaining element 214 in the assembled condition of the shelf assembly 210. The pair of shelf arms 212A, 212B together form a shelf on which an object can be placed that is to be supported by the shelf assembly. Each of the shelf arms 212A, 212B is securable to the retaining element 214 in the installed disposition of the shelf assembly 210 such that a load imposed on the shelf arms 212A, 212B by a thereon supported object urges the angular ends of the first channel engaging protrusion 216 to move toward one another, in the assembled condition of the shelf assembly 210, the shelf arms 212A is secured to the gap sleeve 218 at an attachment location 226 and the shelf arm 212B is secured to the gap sleeve 218 at an attachment location 228.
The shelf assembly 210 may optionally include a second retaining element 314. The retaining element 314 has a pole axis PO-AX and includes a channel engaging protrusion 316, the channel engaging protrusion 316 having a radial extent extending perpendicularly to the pole axis PO-AX and being compatibly configured with respect to a channel of the support post (e.g. a groove 134 of a post 112) such that the channel engaging protrusion 316 extends radially inward into a respective channel of the support post in an installed disposition of the shelf assembly 310. The shelf assembly 310 also includes a gap sleeve 318, the gap sleeve 318 being connected to the channel engaging protrusion 316.
The channel engaging protrusion 316 has a first angular end, a second angular end and an angular body portion between the first and second angular ends, whereupon the angular body portion of the channel engaging protrusion 316 delimits a partial circumference angular perimeter and the first and second angular ends of the channel engaging protrusion 316 delimiting an angular gap CH-GAP.
The gap sleeve 318 has a first angular end 320, a second angular end 322, and an angular body portion 324 between the first and second angular ends, whereupon the angular body portion 324 of the gap sleeve 316 delimits a partial circumference angular perimeter and the first and second angular ends 320, 322 of the of the gap sleeve 318 delimits an angular gap SL-GAP. The angular gap CH-GAP of the channel engaging protrusion 316 and the angular gap SL-GAP of the gap sleeve 318 are at least partially angularly co-incident with one another.
The shelf arms 312A, 312B and the retaining element 314 are securable to one another in an assembled condition of the shelf assembly 310. Each, of the shelf arms 312A. 312B is securable to the retaining element 314 in the installed disposition of the shelf assembly 310 such that a load imposed on the shelf arms 312A, 312B by a thereon supported object urges the angular ends of the channel engaging protrusion 316 of the second retaining element 314 to move toward one another.
As seen in
Reference is had to
As seen in
As seen in
As seen in
As seen in
As seen in
Reference is now had to
The gap sleeve 418 is operatively connected in an assembled condition of the respective fixed location assembly to a suitable channel engaging protrusion, such as, for example, the first channel engaging protrusion 416, and any manner of connection is suitable to the extent that the gap sleeve 418 and the channel engaging protrusion are so connected that selected forces applied to the gap sleeve 418 enhance the stability and retention strength of the first channel engaging protrusion 416 with respect to a support post 112, as will be described in more detail herein. For example, the gap sleeve 418 and the channel engaging protrusion can be integrally formed as a single unit via any suitable forming process such as, for example, casting, extrusion, molding or stamping, and can be integrally formed of any suitable material such as, for example, a metal, alloy, plastic, or polymer material.
As seen in
The cross tension component 464 has a longitudinal extent and is configured to increase in its longitudinal dimension when an elongation force is applied thereto and is biased to return to its non-elongated longitudinal dimension when an elongation force is no longer applied. In this regard, the cross tension component 464 can be configured of a shape memory material such as, for example, a spring steel wire, and/or can be configured with a geometry such as, for example, a curved section 474 that can be drawn into a reduced curvature when an elongation force is applied to the cross tension component 464 and which resiliently returns to its curved geometry when an elongation force is no longer applied. The cross tension component 464 is hingedly connected to the Insert element 460 adjacent the hook grab end 466 thereof and the cross tension component 464 has an opposite end configured with an engagement rod 476 that is compatibly configured with respect to the catch groove 472 located at the second angular end 422 of the gap sleeve 418 so that this engagement rod 476 can be engaged by the catch groove 472 in a manner to be described in more detail herein. The second angular end 422 of the gap sleeve 418 has a radially inner opening in the vicinity of the catch groove 472.
To use the insert element 460 and the cross tension component 464, a user places the insert element 460 into a predetermined initial engagement with the gap. sleeve 418 once the gap sleeve 418 has been inserted in a radial direction onto the support post 112, with the support post passing through the annular gap SL-GAP and this predetermined initial engagement of the insert element $60 with the gap sleeve 418 is illustrated in
Reference is now had to
To install the insert element 560 a user engages the hook grab end 566 on the catch groove 472 that extends axially and is located at the second angular end 422 of the gap sleeve 418. Thereafter, the band component 562 is disposed such that its curved longitudinal side follows along the arcuate trace of the gap sleeve 418 as the gap sleeve 418 surrounds the post 112. Then, the over-center tension component 564 is maneuvered via pivoting of the pivot handle 568 relative to the band component 562 such that the hook grab 570 pivotally mounted to the pivot handle 568 engages a catch groove 592 that extends axially and is secured to the first angular end 420 of the gap sleeve 418. Thereafter, as seen in
The shelf assembly of the present invention can be used in various types of storage arrangements, such as, for example, cabinets or closets. Moreover, the shelf assembly can be used in conjunction with many storage arrangements that do not include a wire grid rack.
The exemplary shapes, dimensions, wire sizes, number of shelves, and materials, described herein are provided by way of example only. Wire grid rack systems fabricated in shapes, dimensions and using different wire sizes and materials and having a different number of shelves other than those discussed and illustrated herein also are contemplated.
Although this invention has been disclosed and described in its preferred forms with a certain degree of particularity, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art. Additionally, it is understood that the present disclosure of the preferred forms is only by way of example and that numerous changes in the details of operation and in the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Name | Date | Kind |
---|---|---|---|
2833421 | Skubic | May 1958 | A |
3322381 | Bubb | May 1967 | A |
4036369 | Eisenberg | Jul 1977 | A |
4128064 | Chung et al. | Dec 1978 | A |
4237798 | Welsch et al. | Dec 1980 | A |
4318352 | Friedman et al. | Mar 1982 | A |
4527490 | Tipton et al. | Jul 1985 | A |
4615278 | Cabrelli | Oct 1986 | A |
4627543 | Nicely | Dec 1986 | A |
4635563 | Hand et al. | Jan 1987 | A |
4656952 | Schweizer | Apr 1987 | A |
4750626 | Nicely | Jun 1988 | A |
4799818 | Sudimak et al. | Jan 1989 | A |
4811670 | Kolvites et al. | Mar 1989 | A |
4852501 | Olson et al. | Aug 1989 | A |
5183167 | Cheng | Feb 1993 | A |
5279231 | Kolvites et al. | Jan 1994 | A |
5354025 | McCaffrey | Oct 1994 | A |
5601038 | Welch et al. | Feb 1997 | A |
5613449 | Pullman | Mar 1997 | A |
5644993 | Dohnalik | Jul 1997 | A |
5676263 | Chang | Oct 1997 | A |
5695081 | Alkalay | Dec 1997 | A |
5881653 | Pfister | Mar 1999 | A |
5884567 | Bartz, Jr. | Mar 1999 | A |
5924581 | Chen | Jul 1999 | A |
5960968 | Wang | Oct 1999 | A |
6015052 | Goldberg et al. | Jan 2000 | A |
6036033 | Chang | Mar 2000 | A |
6044988 | Yang | Apr 2000 | A |
6062150 | Sikora et al. | May 2000 | A |
6065407 | Wang | May 2000 | A |
6068143 | Wang | May 2000 | A |
6079575 | Wang | Jun 2000 | A |
6123206 | Zaremba | Sep 2000 | A |
6253933 | Yang | Jul 2001 | B1 |
6257426 | Masunaka et al. | Jul 2001 | B1 |
6302284 | Zonshin | Oct 2001 | B1 |
6318572 | Lai | Nov 2001 | B1 |
6357611 | Chen | Mar 2002 | B1 |
D455585 | West | Apr 2002 | S |
6364138 | Chen | Apr 2002 | B1 |
6364139 | Chen | Apr 2002 | B1 |
6550730 | Hong | Apr 2003 | B1 |
6659410 | Lu | Dec 2003 | B1 |
6695156 | Wang | Feb 2004 | B1 |
7100781 | Craft | Sep 2006 | B2 |
7478971 | Li | Jan 2009 | B2 |
7543540 | Tatematsu | Jun 2009 | B2 |
7992730 | Huang | Aug 2011 | B2 |
8256629 | Zhu et al. | Sep 2012 | B2 |
8333160 | Lin | Dec 2012 | B2 |
8376156 | Jarvis et al. | Feb 2013 | B2 |
8376157 | Jarvis et al. | Feb 2013 | B2 |
8678207 | Shimazaki et al. | Mar 2014 | B2 |
20020046982 | Guizzardi | Apr 2002 | A1 |
20020113180 | Wiebe | Aug 2002 | A1 |
20030131767 | Chen | Jul 2003 | A1 |
20040065633 | Chen | Apr 2004 | A1 |
20050139562 | Chen | Jun 2005 | A1 |
20060283824 | Farley | Dec 2006 | A1 |
20070095773 | Schwerman | May 2007 | A1 |
20070256613 | Lim | Nov 2007 | A1 |
20080092787 | McAllister et al. | Apr 2008 | A1 |
20100089852 | Wang | Apr 2010 | A1 |
20100096352 | Wang | Apr 2010 | A1 |
20100108631 | McAllister et al. | May 2010 | A1 |
20100155352 | Hsieh | Jun 2010 | A1 |
20110036278 | Karl et al. | Feb 2011 | A1 |
20140261107 | Sabounjian | Sep 2014 | A1 |
20150060380 | Maurer | Mar 2015 | A1 |
20150060621 | Sabounjian | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
M248307 | Nov 1992 | TW |
M416391 | Nov 2011 | TW |
Entry |
---|
PCT/US2013/00279; International Search Report; Filed Dec. 18, 2013; Maurer. |
Number | Date | Country | |
---|---|---|---|
20150102002 A1 | Apr 2015 | US |