This application claims the priority, under 35 U.S.C. § 119, of Chinese Patent Application CN 202120626793.3, filed Mar. 29, 2021; the prior application is herewith incorporated by reference in its entirety.
This application relates to the technical field of household appliances, and in particular, to a shelf tray assembly and a refrigeration appliance having the same.
In existing refrigeration appliances, to improve the space utilization of a storage cavity, a shelf tray assembly is often disposed in the storage cavity to divide the storage cavity into a plurality of small spaces. Further, to meet the requirement of placing a large-size object, a foldable shelf tray assembly is derived, which divides a partition of the shelf tray assembly into a front partition and a rear partition. The front partition can be pulled out to the front of the rear partition at a height equivalent to the rear partition. The front partition can also be pushed to the rear and hidden below the rear partition, which requires an inclined sliding rail for implementation. The manner can meet the storage requirement of a large-size object. To achieve such a movement, the shelf tray assembly needs to occupy as little space as possible in an accommodating cavity, and the sliding rail has to be set very steep. In this case, the front partition is pulled with greater resistance and obvious friction, causing a poor user experience.
A first aspect of embodiments of the invention is to provide an improved shelf tray assembly, which can enhance the smoothness of the partition when being pulled or pushed in.
A shelf tray assembly is provided, including a bracket and a partition, where the partition includes a first partition. The bracket includes a sliding rail, the sliding rail includes a second section and a first section higher than the second section, and there is a first height difference between the first section and the second section. The first partition is configured to reciprocate on the bracket along the sliding rail, and a movement path of the first partition includes a first position and a second position. When the first partition is located at the first position, the first partition is at least partially supported on the first section. When the first partition is located at the second position, the first partition is at least partially supported on the second section. The shelf tray assembly further includes a lifting structure, and the lifting structure is configured to lift the first partition, so that a rising height of the first partition moving from the second position to the first position is less than the first height difference.
The lifting structure includes a first protrusion, and the first protrusion is arranged on the first partition and protrudes toward the sliding rail; and when the first partition is located at the second position, the first protrusion is supported on the second section. When the first partition is located at the first position, a lower end of the first protrusion is lower than a height of the first section.
When the first partition is located at the first position, the first protrusion is suspended so that the lower end of the first protrusion is lower than the height of the first section.
The first partition further includes a support portion higher than the first protrusion, and the support portion extends toward both sides. When the first partition is located at the first position, the support portion is supported on the first section. When the first partition is located at the second position, the support portion is suspended.
The lifting structure further includes a second protrusion located at a front end of the first partition and a second groove located at a front end of the first section, and the second protrusion protrudes toward the sliding rail; and when the first partition is located at the first position, the second protrusion is located at the second groove.
The lifting structure includes a third groove located at a rear end of the first section, and when the first partition is located at the first position, the support portion is located in the third groove.
The shelf tray assembly further includes a first groove located at a rear end of the second section, where the first groove cooperates with the first protrusion to limit backward movement of the first partition, and/or the second groove cooperates with the second protrusion to limit forward movement of the first partition, and/or the third groove cooperates with the support portion to limit the forward movement of the first partition.
The first groove and the sliding rail are connected by an inclined surface.
The sliding rail further includes a guide inclined surface inclined downward from front to rear, and the guide inclined surface connects the first section and the second section.
The guide inclined surface includes a first guide inclined surface and a second guide inclined surface, and the first guide inclined surface is located in front of the second guide inclined surface. The first guide inclined surface is configured for the second protrusion to slide, and the second guide inclined surface is configured for the support portion to slide.
A slope of the first guide inclined surface is less than that of the second guide inclined surface.
The shelf tray assembly further includes a first boss located at a front end of the bracket and protruding inward relative to a side wall of the bracket, where a rearward-facing side wall surface of the first boss is inclined downward from front to rear to form at least a part of the second guide inclined surface.
The shelf tray assembly further includes a second boss located at a front end of the first boss and protruding inward relative to the first boss, where a rearward-facing side wall surface of the second boss is inclined downward from front to rear to form at least a part of the first guide inclined surface.
The partition further includes a second partition, and the second partition is located at a rear end of the bracket. When the first partition is located at the first position, the first partition is located in front of the second partition. When the first partition is located at the second position, the first partition is located below the second partition.
A second aspect of the embodiments of the invention is to provide a refrigeration appliance, and the refrigeration appliance including a shelf tray assembly provides a better user experience.
The refrigeration appliance includes a storage cavity, and further includes any shelf tray assembly described above, and a bracket is connected to a cavity wall of the storage cavity to mount the shelf tray assembly to the storage cavity.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a shelf tray assembly and a refrigeration appliance, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
The following clearly and completely describes the technical solutions of this application with reference to specific embodiments. Apparently, the described embodiments are some rather than all of the embodiments of this application. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of this application without creative efforts shall fall within the protection scope of this application.
Referring now to the figures of the drawings in detail and first, particularly to
As shown in
A movement path of the first partition 3 includes a first position and a second position.
As shown in
Referring to
The shelf tray assembly 100 further includes a lifting structure, which can make a rising height of the first partition 3 moving from the second position to the first position less than a height difference between the first section 5 and the second section 6.
In this way, the first partition 3 can move between the first position and the second position more smoothly with less friction, providing a better user experience.
Referring to
In a possible implementation, the first protrusion 11 is located on the first partition 3 and protrudes toward a direction of the sliding rail 4.
When the first partition 3 is located at the second position, a lower end of the first protrusion 11 is supported on the second section 6, so that a height of the first partition 3 is lifted. When the first partition 3 is located at the first position, the lower end of the first protrusion 11 is lower than a height of the first section 5.
In a solution without a lifting structure, it can be understood that, a rising height of the first partition moving from the second section 6 to the first section 5 is the same as a height difference between the first section 5 and the second section 6. However, in this embodiment, the rising height of the first partition moving from the second section 6 to the first section 5 is less than the height difference between the first section 5 and the second section 6. For example, if a height of a support portion 21 in contact with the first section 5 is consistent with that in the solution without a lifting structure, the rising height of the first partition moving from the second section 6 to the first section 5 is at least less than a height value of the first protrusion 11 compared to the foregoing height difference. A person skilled in the art can immediately adjust the height of the support portion 21 as required, and the objective of this embodiment can still be achieved.
In a possible implementation, when the first partition 3 is located at the second position, the lower end of the first protrusion 11 is supported on the second section 6; and when the first partition 3 is located at the first position, the first protrusion 11 is suspended. It is worth noting that the “suspended” herein may be a case in which the first protrusion 11 is not supported on the first section 5, or may be supported on a surface with a height lower than the height of the first section 5.
In a possible implementation, referring to
The lifting structure may further include a second groove 10 located at a front end of the first section 5, and a second protrusion 9 located at a front end of the first partition 3. When the first partition 3 is located at the first position, the second protrusion 9 is located in the second groove 10. In this way, the foregoing objective can be further achieved, and contact points are increased, so that the first partition 3 becomes more stable.
The lifting structure may further include a third groove 20 located at a rear end of the first section 55. When the first partition 3 is located at the first position, the support portion 21 is located in the third groove 20.
In a possible implementation, the first partition 3 is pushed to the second position from front to rear. A first groove 12 is provided at a rear end of the second section 6. When the first partition 3 is located at the second position, the first protrusion 11 located at a rear end of the first partition 3 is at least partially located in the first groove 12. In this way, backward movement of the first partition 3 can be limited to some extent, so that a case in which the first partition 3 moves backward excessively and hits a rear wall of the storage cavity 201 is effectively reduced.
Further, the first groove 12 is disposed at the rear end of the second section 6, rather than a front end or a middle of the second section 6, which can reduce the friction when the first protrusion 11 slides through the first groove 12, so that the first partition 3 moves more smoothly.
Preferably, a transition section between the first groove 12 and the sliding rail 4 is connected with an inclined surface 14, which can further reduce the friction during movement of a first plate, so that the first partition 3 moves more smoothly.
In a possible implementation, the first partition 3 is pushed to the first position from rear to front. In this case, when the support portion 21 is located in the third groove 20, forward movement of the first partition 3 can be limited. When the second protrusion 9 is located in the second groove 10, the forward movement of the first partition 3 can be limited. Therefore, the probability that the first partition 3 moves forward excessively to detach from the sliding rail 4 is reduced.
Referring to
The guide inclined surface may further include a first guide inclined surface 15 and a second guide inclined surface 16. Relative to an extension direction of the bracket 1, the first guide inclined surface 15 is located in front of the second guide inclined surface 16.
In a possible implementation, the second protrusion 9 of the first partition 3 may slide from the second section 6 to the first section 5 along the first guide inclined surface 15, or may slide from the first section 5 to the second section 6 along the first guide inclined surface 15.
In a possible implementation, the support portion 21 of the first partition 3 may slide from the second section 6 to the first section 5 along the second guide inclined surface 16, or may slide from the first section 5 to the second section 6 along the first guide inclined surface 15.
In a possible implementation, a third groove 20 is provided at a junction of the first section 5 and the second guide inclined surface 16.
In this way, the movement path of the first partition 3 is shorter whether moving from the first position to the second position, or from the second position to the first position, which is more convenient for use.
In a possible implementation, a slope of the first guide inclined surface 15 is less than that of the second guide inclined surface 16. It can be understood that a force point is closer to the front end of the first partition 3 whether a user pulls out the first partition 3 or pushes in the first partition 3. The inclination rate of the first guide inclined surface 15 is set to be less than that of the second guide inclined surface 16, so that a moving process of the first partition 3 becomes smoother, and the friction is reduced.
In a possible implementation, referring to
Still referring to
From the foregoing text description and/or accompanying drawings, it can be learned that the first guide inclined surface 15 is more inward than the second guide inclined surface 16. To successfully implement the foregoing moving process of the first partition 3, some improvement can be made to the first boss 17 and/or the support portion 21. For example, the support portion 21 is larger or located more outside so that the support portion 21 can slide on the second guide inclined surface 16; and the second protrusion 9 has a relatively small size or has a location closer to inside so that the second protrusion 9 can slide on the first guide inclined surface 15.
Hereinafter, the principle of the invention is exemplarily described below with reference to
The invention further provides a refrigeration appliance 200, as shown in
The refrigeration appliance 200 may be a refrigerator, a wine cabinet, or the like.
The refrigeration appliance 200 provided by the invention can effectively reduce the height difference when the first partition rises or falls, and make the moving process of the first partition become smoother with less friction, so that the user experience can be improved.
Although specific implementations have been described above, these implementations are not intended to limit the scope of the disclosure of the present application, even if only one implementation is described with respect to specific features. The feature example provided in the disclosure of the present application is intended to be illustrative rather than limiting, unless otherwise stated. During specific implementation, according to an actual requirement, in a technically feasible case, the technical features of one or more dependent claims may be combined with the technical features of the independent claims, and the technical features from the corresponding independent claims may be combined in any appropriate manner instead of using just specific combinations listed in the claims.
The various specific implementations described above and shown in the accompanying drawings are merely used for illustrating the present application, but are not all of the present application. Any variation made by a person of ordinary skill in the art to the present application within the scope of the basic technical concept of the present application shall fall within the protection scope of the present application.
Number | Date | Country | Kind |
---|---|---|---|
202120626793.3 | Mar 2021 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3859932 | Armstrong | Jan 1975 | A |
8403438 | Park | Mar 2013 | B2 |
8840205 | Chellappan | Sep 2014 | B2 |
9033438 | Kelly | May 2015 | B2 |
9335089 | Gossens | May 2016 | B1 |
10935305 | Bassler | Mar 2021 | B1 |
20100109498 | Ramm | May 2010 | A1 |
20110001415 | Park et al. | Jan 2011 | A1 |
20120091084 | Amaral | Apr 2012 | A1 |
20200263920 | Brzezina | Aug 2020 | A1 |
20210102750 | Voltarelli | Apr 2021 | A1 |
20220018594 | Wantland | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
106766627 | May 2017 | CN |
102009046027 | May 2011 | DE |
102012221801 | May 2014 | DE |
102021207031 | Jan 2023 | DE |
2002090054 | Mar 2002 | JP |
100431346 | May 2004 | KR |
20130037117 | Apr 2013 | KR |
Number | Date | Country | |
---|---|---|---|
20220307762 A1 | Sep 2022 | US |