Shell and tiled liner arrangement for a combustor

Information

  • Patent Grant
  • 9423129
  • Patent Number
    9,423,129
  • Date Filed
    Thursday, December 19, 2013
    10 years ago
  • Date Issued
    Tuesday, August 23, 2016
    8 years ago
Abstract
A combustor adapted for use in a gas turbine engine is disclosed. The combustor includes a metallic shell forming a cavity and a ceramic liner arranged in the cavity of the metallic shell. The ceramic liner defines a combustion chamber in which fuel is burned during operation of a gas turbine engine. The ceramic liner includes a plurality of ceramic tiles mounted to the metallic shell and arranged to shield the metallic shell from heat generated in the combustion chamber.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally combustors used in gas turbine engines; more particularly, the present disclosure relates to a combustor including a metallic shell and a liner made up of ceramic tiles.


BACKGROUND

Engines, and particularly gas turbine engines, are used to power aircraft, watercraft, power generators and the like. Gas turbine engines typically include a compressor, a combustor, and a turbine. The compressor compresses air drawn into the engine and delivers high pressure air to the combustor. The combustor is a component or area of a gas turbine engine where combustion takes place. In a gas turbine engine, the combustor receives high pressure air and adds fuel to the air which is burned to produce hot, high-pressure gas. After burning the fuel, the hot, high-pressure gas is passed from the combustor to the turbine. The turbine extracts work from the hot, high-pressure gas to drive the compressor and residual energy is used for propulsion or sometimes to drive an output shaft.


Combustors include liners that contain the combustion process during operation of a gas turbine engine. The liner included in the combustor is designed and built to withstand high-temperature cycles induced during combustion. In some cases, liners may be made from metallic superalloys. In other cases, liners may be made from ceramic matrix composites (CMOs) which are a subgroup of composite materials as well as a subgroup of technical ceramics. CMOs may comprise ceramic fibers embedded in a ceramic matrix, thus forming a ceramic fiber reinforced ceramic (CFRC) material. The matrix and fibers can consist of any ceramic material, whereby carbon and carbon fibers can also be considered a ceramic material.


Combustors and turbines made of metal alloys require significant cooling to be maintained at or below their maximum use temperatures. The operational efficiencies of gas turbine engines are increased with the use of CMC materials that require less cooling and have operating temperatures that exceed the maximum use temperatures of metal alloys. The reduced cooling required by CMC combustor liners when compared to metal alloy combustion liners permits greater temperature uniformity and thereby leads to reduced NOx emissions.


One challenge relating to the use of CMC tiles is that they are sometimes secured to the surrounding metal shell via metal fasteners. Metal fasteners lose their strength and may even melt at CMC operating temperatures. Since the allowable operating temperature of a metal fastener is lower than the allowable operating temperature of the CMC, metal fasteners, and/or the area surrounding it, is often cooled to allow it to maintain its strength. Such a configuration may undermine the desired high temperature capability of the CMC. Accordingly, new techniques and configurations are needed for securely fastening liner material, such as CMC tiles, to the walls of enclosures experiencing high-temperature environments.


SUMMARY

The present disclosure may comprise one or more of the following features and combinations thereof.


A combustor adapted for use in a gas turbine engine is disclosed in this paper. The combustor includes a metallic shell forming a cavity and a ceramic liner arranged in the cavity of the metallic shell. The ceramic liner defines a combustion chamber in which fuel is burned during operation of a gas turbine engine. The ceramic liner includes a plurality of ceramic tiles coupled to the metallic shell and arranged to shield the metallic shell from heat generated in the combustion chamber.


In illustrative embodiments, the plurality of ceramic tiles are coupled to the metallic shell by metallic fasteners. Many of the metallic fasteners may be shielded from heat generated in the combustion chamber by portions of adjacent ceramic tiles coupled to the metallic shell. By shielding the metallic fasteners from the combustion chamber, the metallic fasteners can survive temperatures in the combustor.


In illustrative embodiments, the fasteners coupling an individual ceramic tile to the metallic shell may extend through preformed apertures in the ceramic tile. The preformed apertures may be sized to locate the ceramic tile while also allowing for expansion/contraction of the ceramic tile as the ceramic tile is heated/cooled during use of the combustor. In particular, a single round locator hole may receive a locator fastener locating a ceramic tile and a plurality of elongated securement slots may receive a plurality of securement fasteners so that the ceramic tile can expand and contract while the securement slots move around the securement fasteners.


In illustrative embodiments, the shell is formed to include a number of dimples that extend toward the combustion chamber and are received in corresponding hollows formed in the ceramic tiles. The dimples and hollows may be correspondingly sized so that a substantially uniform, predetermined distance is maintained between the dimples and the portion of the ceramic tiles forming the hollow. By maintaining a substantially uniform, predetermined distance, heat transfer from the ceramic tiles to the shell can be evenly distributed. In some embodiments, holes may be formed through the dimples to allow cooling air to be supplied to the ceramic tiles.


These and other features of the present disclosure will become more apparent from the following description of the illustrative embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cut-away view of a gas turbine engine including a combustor in accordance with the present disclosure;



FIG. 2 is a partial cross-sectional view of the combustor shown in FIG. 1 showing that the combustor includes a metallic shell, a ceramic liner made up of a plurality of ceramic tiles, a fuel nozzle, and a heat shield;



FIG. 3 is a partial cross-sectional view of a second combustor showing that the combustor includes a metallic shell, a ceramic liner made up of a plurality of ceramic tiles, a fuel nozzle, and a heat shield;



FIG. 4 is an internal plan view of some of ceramic tiles included in the combustor of FIG. 3 showing that the ceramic tiles include preformed apertures that receive fasteners for locating and securing the ceramic tiles to the metallic shell while allowing expansion and contraction of the ceramic tiles in the axial and circumferential directions;



FIG. 5 is a partial cross-sectional view of a third combustor showing that the combustor includes a metallic shell, a ceramic liner made up of a plurality of ceramic tiles, a fuel nozzle, and a heat shield;



FIG. 6 is a perspective view of a portion of the third combustor shown in FIG. 5 illustrating an inner shell member included in the metallic shell and a plurality of ceramic tiles coupled to the inner shell member and showing that the inner shell member is formed to include dimples that are received in the ceramic tiles;



FIG. 7 is a partial cross-sectional view of a fourth combustor showing that the combustor includes a metallic shell, a ceramic liner made up of a plurality of ceramic tiles, a fuel nozzle, and a heat shield;



FIG. 8 is an internal plan view of some of ceramic tiles included in the combustor of FIG. 7 showing that the ceramic tiles include preformed apertures that receive fasteners for locating and securing the ceramic tiles to the metallic shell while allowing expansion and contraction of the ceramic tiles in the circumferential direction;



FIG. 9 is a partial cross-sectional view of FIG. 8 showing that the ceramic tiles form a ship lapped joint with circumferentially adjacent tiles that are tied together with tabs; and



FIG. 10 is another partial cross-sectional view of FIG. 8 showing that the inner and outer elements of overlapping tiles may have different heat transfer treatments.





DETAILED DESCRIPTION

For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to a number of illustrative embodiments illustrated in the drawings and specific language will be used to describe the same.


The arrangement of an illustrative high-temperature combustor 10 in a gas turbine engine 110 is shown in FIG. 1. The gas turbine engine 110 includes a fan 112, a compressor 114, the combustor 10, and a turbine 118 all mounted to a case 120. The fan 112 is driven by the turbine 118 and provides thrust for propelling a vehicle (not shown). The compressor 114 is configured compress and deliver air to the combustor 10. The combustor 10 is configured to mix fuel with the compressed air received from the compressor 114 and to ignite the fuel. The hot, high pressure products of the combustion reaction in the combustor 10 are directed into the turbine 118 and the turbine 118 extracts work to drive the compressor 114 and the fan 112.


The combustor 10 includes a shell 12, a liner 14, fuel nozzles 16, and a heat shield 18 as shown, for example, in FIG. 2. The shell 12 is constructed from a metallic material and defines an annular cavity 15. The liner 14 arranged inside the cavity 15 defined by the shell 12 and extends around an annular combustion chamber 45 in which fuel is ignited to produce hot, high-temperature gases that drive the gas turbine engine 110. The fuel nozzles 16 are arranged at circumferential intervals around an axially forward end 45F of the combustion chamber 45 and provides fuel to the combustion chamber 45. The heat shield 18 is arranged to protect a forward side 12F of the shell 12. The combustor 10 feeds hot, high-pressure gas to a vane ring assembly 20 arranged at an axially aft end 45A of the combustion chamber 45 and that is used to drive the turbine 118 of the gas turbine engine 110.


The shell 12 illustratively includes an outer shell member 30 and an inner shell member 34 that is generally concentric with and nested inside the outer shell member 30. To expand the size of the cavity 15, the outer shell member 30 is formed to include a plurality of radially offset steps (or joggles) 31, 32 and the inner shell member 34 is formed to include a plurality of radially offset steps (or joggles) 35, 36, 37 as shown in FIG. 2.


The liner 14 is illustratively assembled from a plurality of ceramic tiles 21-25 secured to the shell 12 by a plurality of metallic fasteners 28 as shown in FIG. 2. In the illustrative embodiment, each tile 21-25 is one of a plurality of ceramic tiles that is arranged around the circumference of the outer or inner shell members 30, 34. The fasteners 28 are illustratively arranged to extend through corresponding ceramic tiles 21-25 along an axially forward side of the ceramic tiles 21-25. Thus, the ceramic tiles 21-25 are cantilevered and are free to expand and contract in the axial direction. In some embodiments, some of the fasteners 28 extend through slots arranged to extend circumferentially around the ceramic tiles 21-25 so that the ceramic tiles 21-25 are allowed to expand and contract in the circumferential direction.


The heat shield 18 is arranged at the axially forward end 12F of the shell 12 as shown in FIG. 2. The heat shield extends between the combustion chamber 45 and the fasteners 28 securing axially-forward ceramic tiles 21, 22 to the shell 12 so that the fasteners 28 are shielded from heat generated in the combustion chamber 45. Openings 38 in the heat shield 18 allow the fuel nozzles 16 to access the combustion chamber 45.


The ceramic tiles 21-25 are illustratively arranged so that fasteners 28 securing axially-aft ceramic tiles 23, 24, 25 are shielded from heat generated in the combustion chamber by axially-adjacent ceramic tiles 21, 22, 24 as shown in FIG. 2. More particularly, axially-forward ceramic tiles 21, 22 are arranged to overlap the fasteners 28 securing axially-adjacent ceramic tiles 23, 24 along with a portion of the axially-intermediate tiles 23, 24 surrounding the fasteners 28. Similarly, axially-intermediate tiles 24 are arranged to overlap the fasteners 28 securing axially-adjacent ceramic tiles 25 along with a portion of the axially-adjacent tiles 25 surrounding the fasteners 28. In some embodiments, more or fewer axially-arranged rows of ceramic tiles may be added to accommodate longer or shorter combustor designs.


As a result of the overlapped arrangement of the ceramic tiles 21-25, the fasteners 28 experience lower temperatures than are presented in the combustion chamber 45 as suggested in FIG. 2. The lower temperatures experienced by the fasteners 28 allow the fasteners 28 to have longer useful lives and may reduce or eliminate the need for cooling air to be supplied to the fasteners 28. In addition, by lowering temperatures experienced around the fasteners 28, harmful thermal gradients induced in the ceramic tiles 21-25 may be reduced.


Moreover, in the illustrative embodiment, the fasteners 28 are spaced a predetermined distance 95 from the uncovered portion of the tile 21-25 through which they extend as shown in FIG. 2. This predetermined distance 95 is selected based on the distance from the uncovered portion that heat will transfer through the tiles 21-25 to ensure that the temperature will be low enough to be within the useful temperature limit of the fasteners.


In the illustrative embodiment shown in FIGS. 1 and 2, the ceramic tiles 21-25 are formed in two dimensions and have a generally U-shaped cross-section. The ceramic tiles 21-25 are illustratively made from a ceramic matrix composite (CMC) such as silicon-carbide fibers in a silicon-carbide matrix and are adapted to withstand relatively-high temperatures as are produced by the combustion of fuel inside the combustor 10. In other embodiments, the ceramic tiles 21-25 may be made of other ceramic-containing composite materials and/or of monolithic ceramic materials. The shape of the ceramic tiles 21-25 allow the ceramic tiles 21-25 to be simply produced in large quantities.


The fasteners 28 are illustratively made from a metallic material which may provide greater tensile strength and preload capability suitable for the vibratory environment inside the gas turbine engine 110. The illustrative fasteners 28 are configured to receive cooling air from the compressor 112 of the gas turbine engine 110 as suggested by arrows 29 in FIG. 2. The fasteners 28 may be bolts, rivets, or the like. In some embodiments, no cooling air is supplied to the fasteners 28 depending on the fastener material selection and expected temperature of the fasteners during operation.


In other embodiments, full hoop tiles may be used rather than a number of circumferentially-adjacent tiles while still being arranged so that the metallic fasteners 28 are shielded from the heat of combustion. In still other embodiments, a single wall liner


Upon securing the ceramic tiles 21-24 included in the liner 14 to the metallic shell 12, the combustor 10 may be mounted to the case 120 of the gas turbine engine 110 as suggested in FIG. 1. More particularly, the combustor 10 can be mounted to a diffuser casing 121 included in the case 120 of the gas turbine engine 110 using conventional methods. In the illustrative embodiment, metal fasteners 28 couple an axially-forward wall 98 of the shell 12 to a radially-extending flange 122 included in the diffuser casing 121 as shown in FIG. 2. In other embodiments, other methods of fastening the shell 12 to the case 120 may be implemented without departing from the spirit of the present disclosure.


Another illustrative combustor 210 adapted for use in the gas turbine engine 110 is shown in FIG. 3. The combustor 210 is substantially similar to the combustor 10 shown in FIGS. 1-2 described herein. Accordingly, similar reference numbers in the 200 series indicate features that are common between the combustor 10 and the combustor 210. The description of the combustor 10 is hereby incorporated by reference to apply to the combustor 210, except in instances when it conflicts with the specific description and drawings of combustor 210.


Unlike the combustor 10, the combustor 210 includes a shell 212 having outer and inner shell members 230, 234 that do not have joggles as shown in FIG. 3. Rather, axially extending walls 260, 264 of the shell 212 are contoured as shown in FIG. 3.


Further, unlike the combustor 10, the combustor 210 includes ceramic tiles 221-224 that each include a body 250, a plurality of axially-extending tabs 252 arranged along an axially-forward side of a corresponding body 250, and a plurality of circumferentially-extending tabs 254 arranged along a circumferential side of a corresponding body 250 as shown in FIG. 4. Metallic fasteners 228 extend through the tabs 252, 254 to couple the ceramic tiles 221-224 to the metallic shell 212.


The body 250 of each ceramic tile 221-224 extends around a portion of the combustion chamber 245 and defines a portion of the combustion chamber 245 as shown in FIG. 3. The body 250 of axially-forward ceramic tiles 221, 222 are arranged to overlap the fasteners 28 securing axially-aft ceramic tiles 223, 224 and axially-extending tabs 252 so that the fasteners 228 and tabs 252 are shielded from heat generated in the combustion chamber 245 as shown in FIGS. 2 and 3. Further, the body 250 of circumferentially-adjacent ceramic tiles (e.g. 221′) are arranged to overlap the fasteners 228 securing ceramic tiles (e.g. 221) in a similar axial position and radially-extending tabs 254 so that the fasteners 228 and tabs 254 are shielded from heat generated in the combustion chamber 245 as shown in FIG. 3. In the illustrative embodiment, the body 250 of each ceramic tile 221-224 has a generally U-shaped cross-section.


The axially-extending tabs 252 of each ceramic tile 221-224 extend from the body 250 of a corresponding ceramic tile 221-224 as shown in FIGS. 3 and 4. The axially-extending tabs 252 are arranged radially further away from the combustion chamber 245 than the corresponding body 250 from which they extend. Each tab 252 is formed to include a securement slot 256 through which a securement fastener 228 extends. The securement slots 256 are elongated in the radial direction to allow expansion/contraction of the ceramic tiles 221-224 in the radial direction on account of heating/cooling during operation of the combustor 210.


The circumferentially-extending tabs 254 of each ceramic tile 221-224 extend from the body 250 of a corresponding ceramic tile 221-224 as shown in FIGS. 3 and 4. The circumferentially-extending tabs 254 are arranged radially further away from the combustion chamber 245 than the corresponding body 250 from which they extend. One circumferentially-extending tab 254′ is formed to include a round locating hole 258′ through which a locating fastener extends. Each other radially-extending tab 254 is formed to include a securement slot 258 through which a securement fastener.


The locating hole 258′ included in a radially-extending tab 254′ of a ceramic tile 221-224 (and the locating fastener that extends therethrough) locates the corresponding ceramic tile 221-224 relative to the shell 212. The securement slots 258 included in radially-extending tab 254 of a ceramic tile 221-224 are elongated in the axial direction to allow expansion/contraction of the ceramic tiles 221-224 in the axial direction on account of heating/cooling during operation of the combustor 210.


By arranging the fasteners 228 through the tabs 252, 254 the fasteners 28 are spaced a predetermined distance from the uncovered body 250 of the tiles 221-224 as shown in FIG. 3. This predetermined distance is selected based on the distance from the uncovered portion that heat will transfer through the tiles 221-224 to ensure that the temperature of the fasteners 228 will be low enough to be within the useful temperature limit of the fasteners 228.


Another illustrative combustor 310 adapted for use in the gas turbine engine 110 is shown in FIG. 5. The combustor 310 is substantially similar to the combustor 10 shown in FIGS. 1-2 described herein. Accordingly, similar reference numbers in the 300 series indicate features that are common between the combustor 10 and the combustor 310. The description of the combustor 10 is hereby incorporated by reference to apply to the combustor 310, except in instances when it conflicts with the specific description and drawings of combustor 310.


Unlike the combustor 10, the combustor 310 includes a shell 212 having outer and inner shell members 330, 334 that do not have radial steps as shown in FIG. 5. Rather, the outer shell 330 includes an axially extending wall 360 and a plurality of dimples 361, 363 that extend from the wall 360 toward the combustion chamber 325. Additionally, the inner shell 334 includes an axially extending wall 364 and a plurality of dimples 362, 364 that extend from the wall 364 toward the combustion chamber 325. Each dimple 361-364 includes a plurality of cooling holes 371 that allow cooling air from the compressor 112 to be blown onto the ceramic tiles 321-324.


Further, unlike the combustor 10, the combustor 310 includes ceramic tiles 321-326 that each include a body 350, a plurality of axially-extending tabs 352 arranged along an axially-forward side of a corresponding body 350, and a plurality of circumferentially-extending tabs 354 arranged along a circumferential side of a corresponding body 350 as shown in FIG. 6. Metallic fasteners 328 extend through round holes in the tabs 352, 354 to couple the ceramic tiles 321-326 to the metallic shell 312. In some embodiments, some of the holes through which fasteners 328 extend may be elongated into slots adapted to allow thermal growth of the ceramic tiles 321-326 during operation of the combustor 310.


The body 350 of each ceramic tile 321-326 extends around a portion of the combustion chamber 345 and defines a portion of the combustion chamber 345 as shown in FIG. 3. The body 350 of axially-forward ceramic tiles 321, 322 are arranged to overlap the fasteners 328 securing axially-intermediate ceramic tiles 323, 324 and axially-extending tabs 352 so that the fasteners 328 and tabs 352 are shielded from heat generated in the combustion chamber 345 as shown in FIGS. 5 and 6. Similarly, the body 350 of axially-intermediate ceramic tiles 323, 324 are arranged to overlap the fasteners 328 securing axially-aft ceramic tiles 325, 326 and axially-extending tabs 352 so that the fasteners 328 and tabs 352 are shielded from heat generated in the combustion chamber 345. Further, the body 350 of circumferentially-adjacent ceramic tiles (e.g. 326′) are arranged to overlap the fasteners 328 securing ceramic tiles (e.g. 326) in a similar axial position and radially-extending tabs 354 so that the fasteners 328 and tabs 354 are shielded from heat generated in the combustion chamber 345 as shown in FIG. 6.


In the illustrative embodiment, the body 350 of axially-forward and axially-intermediate ceramic tiles 321-324 has a generally U-shaped cross-section and is formed to include a hollow 351 as shown in FIG. 5. The hollows 351 are sized to receive one of the dimples 361-364. The hollows 351 are further sized so that a substantially uniform distance is maintained between the body 350 of a corresponding ceramic tile 321-324 and a dimple 361-364 received in the body 350. Thus, by providing a shorter impingement distance for the cooling air provided, more effective heat transfer away from the ceramic tiles 321-324 may be accomplished. The dimples 361-364 may be manufactured using a stamping, a rolling process, or another suitable process.


Another illustrative combustor 410 adapted for use in the gas turbine engine 110 is shown in FIG. 7. The combustor 410 is substantially similar to the combustor 210 shown in FIGS. 3-4 described herein. Accordingly, similar reference numbers in the 400 series indicate features that are common between the combustor 210 and the combustor 410. The description of the combustor 210 is hereby incorporated by reference to apply to the combustor 410, except in instances when it conflicts with the specific description and drawings of combustor 410.


Unlike the combustor 210, the combustor 410 includes a shell 410 having contoured outer and inner shell members 430, 432 as shown in FIG. 7. The contoured outer and inner shell members 430, 432 define the shape of the combustion chamber 445.


Also, unlike the combustor 210, the combustor 410 includes ceramic tiles 421-424 that do not include circumferentially-extending tabs as shown in FIG. 8. Rather the ceramic tiles 421-424 include circumferentially extending shelves 470, 472 that cooperate to formed ship lapped joints 475 with circumferentially-adjacent ceramic tiles (e.g. 421′, 423′) as suggested in FIGS. 8, 9, and 10. The ship lapped joints 475 provide a labyrinth like seal between circumferentially-adjacent ceramic tiles and adds stiffness to the liner 414.


In addition to axially-extending tabs 454 that are arranged along the forward side of the axially-forward ceramic tiles 421, 422, the axially-forward ceramic tiles 421, 422 include axially-extending tabs 455 arranged along an aft side of the axially-forward ceramic tiles 421, 422 as shown in FIG. 8. The axially-extending tabs 455 are secured to the shell 412 by metallic fasteners 428 that extend through circumferentially elongated slots 457. The axially-extending tabs 455 and the metallic fasteners 428 are shielded from the combustion chamber 445 by the body 450 of the axially-aft ceramic tiles 423, 424 as shown in FIG. 7.


In addition to axially-extending tabs 454 that are arranged along the forward side of the axially-aft ceramic tiles 423, 424, the axially-aft ceramic tiles 423, 424 include porpoise seals 465 arranged along an aft side of the axially-aft ceramic tiles 423, 424 as shown in FIG. 7. The porpoise seals 465 are received in V-shaped channels 466 formed by the shell 412 and are secured to the shell 412 by metallic fasteners 428 that extend through circumferentially elongated slots (not shown). The porpoise seals 465 and the metallic fasteners 428 are shielded from the combustion chamber 445 by the body 450 of the axially-aft ceramic tiles 423, 424 as shown in FIG. 7. While not specifically shown, fasteners 428 may be actively cooled as described elsewhere herein.


In the illustrative embodiment, circumferentially-adjacent tiles 421, 421′ are interlocked using interlocking tabs 481, 483 received in slots 482, 484 as shown in FIG. 9. The joint established as a result of interlocking neighboring tiles 421, 421′ using the interlocking tabs 481, 483 may reduce leakage. For the purpose of the present disclosure, the interlocking tabs 481, 483 discussed with respect to FIGS. 8 and 9 may not be used on either the first tile or the last tile of the CMC combustor liner.


In the illustrative embodiment, the overlapping shelves 470, 472 include a cold-side shelf 470 and a hot-side shelf 472 as shown in FIG. 10. The cold-side shelf 470 may be exposed to active cooling via impingement holes or the like from the shell 412. The cold-side shelf 470 may be formed to include a relatively-large diameter cooling hole 492 that aligns with a relatively-small diameter cooling hole 494 formed in the hot-side shelf 472. These cooling holes 492, 494 may be adapted to conduct active cooling air to the hot-side shelf 472 during use of the combustor 410.


Ceramic combustor liners such as CMC liners often require less cooling than metal alloys typically used combustors and turbines, and the reduction in liner cooling permits a flattening of the combustor profile to be achieved. In turn, higher turbine inlet temperatures and flatter combustor profiles lead to reduced NOx emissions. Furthermore, reduced liner cooling allows a greater fraction of airflow in the gas turbine engine to be dedicated to the combustion process. As a result, in a “lean” burn application, greater airflow for combustion provides a reduction in emissions and/or provides a greater temperature increase for a given emissions level. In a “rich” burn application, greater airflow for combustion allows more air used to be used for quenching and provides reduced NOx emissions.


With regard to fabrication, one driving cost of a CMC combustor liner fabrication process is furnace time, which may be approximately three weeks. Given the high temperatures that must be maintained to properly cure CMC combustor liner components, the cost of the CMC combustor liner fabrication process may be high. For a single wall integrated (monolithic/annular) CMC combustor liner, the design and shape of the liner may allow for only one combustor to be cured at a time in a furnace. However, using a tiled CMC liner design as described herein allows tiles for several combustors to be cured at the same time which provides a dramatic cost savings. For example, the overall cost of a fabrication process for a CMC tiled liner design may be one half of the cost of the single wall CMC liner design for an annular wall liner of the same size.


While the disclosure has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.

Claims
  • 1. A combustor for use in a gas turbine engine, the combustor comprising an annular metallic shell forming an annular cavity, the annular metallic shell including an outer shell member and an inner shell member nested concentrically inside the outer shell member, andan annular liner arranged in the annular cavity of the annular metallic shell and defining an annular combustion chamber, the annular liner including a plurality of ceramic tiles arranged to shield the annular metallic shell from combustion in the combustion chamber,wherein one of the outer shell member and the inner shell member of the annular metallic shell includes a wall and a plurality of dimples extending from the wall toward the annular liner and each of the plurality of ceramic tiles is formed to include a hollow sized and arranged to receive at least a portion of one of the dimples included in the annular metallic shell.
  • 2. The combustor of claim 1, wherein each of the plurality of ceramic tiles includes a body and a tab, the body arranged around the combustion chamber and formed to include the hollow sized to receive at least a portion of one of the dimples, and the tab coupled to a wall included in the annular metallic shell.
  • 3. The combustor of claim 2, wherein the tab of a first ceramic tile is coupled to one of the walls included in the metallic shell by a fastener that extends through the tab of the first ceramic tile and a second ceramic tile is arranged between the tab of the first ceramic tile and the combustion chamber so that the fastener is shielded by the second ceramic tile from heat generated in the combustion chamber.
  • 4. The combustor of claim 2, wherein the body of each of the plurality of ceramic tiles is arranged around the combustion chamber to define the combustion chamber and the tab of each ceramic tile is spaced in a radial direction from the combustion chamber.
  • 5. The combustor of claim 2, wherein the hollow is sized so that a substantially uniform distance is maintained between the body of a first ceramic tile and a dimple received in the body of the first ceramic tile.
  • 6. The combustor of claim 1, wherein both of the outer shell member and the inner shell member of the annular metallic shell includes a wall and a plurality of dimples extending from the wall toward the annular liner.
  • 7. The combustor of claim 6, wherein a plurality of cooling holes are formed through the dimples of the outer shell member and a plurality of cooling holes are formed through the dimples of the inner shell member to allow cooling air to be directed onto the plurality of ceramic tiles.
  • 8. The combustor of claim 1, wherein a first ceramic tile included in the annular line is coupled to the annular metallic shell by a fastener and a portion of a second ceramic tile is arranged between the fastener and the combustion chamber to shield the fastener from heat generated in the combustion chamber.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/798,253, filed Mar. 15, 2013, which is incorporated by reference in its entirety herein.

US Referenced Citations (99)
Number Name Date Kind
2709894 Oulianoff et al. Jun 1955 A
3422620 Fantozzi Jan 1969 A
3899876 Williamson Aug 1975 A
3918255 Holden Nov 1975 A
4222300 El-Habr Sep 1980 A
4236378 Vogt Dec 1980 A
4480436 Maclin Nov 1984 A
4555901 Wakeman Dec 1985 A
4567730 Scott Feb 1986 A
4614082 Sterman Sep 1986 A
4655044 Dierberger Apr 1987 A
4688310 Kelm Aug 1987 A
4901522 Commaret Feb 1990 A
4907411 Krueger Mar 1990 A
4912922 Maclin Apr 1990 A
4944151 Hovnanian Jul 1990 A
4975014 Rufin et al. Dec 1990 A
5079915 Veau Jan 1992 A
5113660 Able et al. May 1992 A
5291732 Halila Mar 1994 A
5331816 Able et al. Jul 1994 A
5333443 Halila Aug 1994 A
5343643 Cochrane Sep 1994 A
5363643 Halila Nov 1994 A
5445469 Huck et al. Aug 1995 A
5499499 Ambrogi et al. Mar 1996 A
5501071 Ansart et al. Mar 1996 A
5553455 Craig et al. Sep 1996 A
5592814 Palusis et al. Jan 1997 A
5598697 Ambrogi et al. Feb 1997 A
5609031 Jones Mar 1997 A
5636508 Shaffer et al. Jun 1997 A
5755093 Palusis et al. May 1998 A
5799491 Bell et al. Sep 1998 A
6029455 Sandelis Feb 2000 A
6041590 Hayton Mar 2000 A
6045310 Miller et al. Apr 2000 A
6047539 Farmer Apr 2000 A
6102610 Palusis et al. Aug 2000 A
6223538 Benz et al. May 2001 B1
6334298 Aicholtz Jan 2002 B1
6408628 Pidcock et al. Jun 2002 B1
6571560 Tatsumi et al. Jun 2003 B2
6708495 Calvez et al. Mar 2004 B2
6718774 Razzell Apr 2004 B2
6775985 Mitchell et al. Aug 2004 B2
6823676 Conete et al. Nov 2004 B2
6830437 Cairo et al. Dec 2004 B2
6895757 Mitchell et al. May 2005 B2
6895761 Mitchell et al. May 2005 B2
6904757 Mitchell et al. Jun 2005 B2
6931855 Glessner Aug 2005 B2
7059133 Gerendas Jun 2006 B2
7093441 Burd et al. Aug 2006 B2
7140185 Burd et al. Nov 2006 B2
7153054 Arbona Dec 2006 B2
7237389 Ryan et al. Jul 2007 B2
7261489 Arbona et al. Aug 2007 B2
7291407 Merrill et al. Nov 2007 B2
7363763 Coughlan et al. Apr 2008 B2
7464554 Cheung et al. Dec 2008 B2
7546743 Bulman et al. Jun 2009 B2
7647779 Shi et al. Jan 2010 B2
7665307 Burd et al. Feb 2010 B2
7805945 Grote et al. Oct 2010 B2
7908867 Keller et al. Mar 2011 B2
7926278 Gerendas et al. Apr 2011 B2
7942004 Hodder May 2011 B2
7950234 Radonovich et al. May 2011 B2
8015829 Coughlan et al. Sep 2011 B2
8074453 Gerendas et al. Dec 2011 B2
8113004 Carlisle et al. Feb 2012 B2
8118546 Morrison Feb 2012 B2
8122727 Shi et al. Feb 2012 B2
8141371 Habarou et al. Mar 2012 B1
8146372 Carrere et al. Apr 2012 B2
8256223 Dierberger et al. Sep 2012 B2
8256224 Garry et al. Sep 2012 B2
8281598 Gerendas et al. Oct 2012 B2
8359865 Dierberger et al. Jan 2013 B2
8359866 Dierberger et al. Jan 2013 B2
8556531 Bird Oct 2013 B1
20040182085 Jeppel Sep 2004 A1
20080104963 Grote et al. May 2008 A1
20090193813 Garry Aug 2009 A1
20090199837 Tschirren Aug 2009 A1
20100242486 Jarmon Sep 2010 A1
20100251721 Morrison et al. Oct 2010 A1
20110027569 Richards Feb 2011 A1
20110030378 Carlisle Feb 2011 A1
20110185737 Dierberger et al. Aug 2011 A1
20110185740 Dierberger et al. Aug 2011 A1
20120144835 Taylor et al. Jun 2012 A1
20120198854 Schilp Aug 2012 A1
20120210719 Dierberger et al. Aug 2012 A1
20120234402 Richards Sep 2012 A1
20120275900 Snider Nov 2012 A1
20130019603 Dierberger et al. Jan 2013 A1
20150330633 Graves Nov 2015 A1
Foreign Referenced Citations (1)
Number Date Country
1801502 Jun 2007 EP
Non-Patent Literature Citations (1)
Entry
International Search Report for PCT International Application Serial No. PCT/US2013/076696.
Related Publications (1)
Number Date Country
20140360196 A1 Dec 2014 US
Provisional Applications (1)
Number Date Country
61798253 Mar 2013 US