Shellcode detection

Information

  • Patent Grant
  • 9973531
  • Patent Number
    9,973,531
  • Date Filed
    Friday, June 20, 2014
    10 years ago
  • Date Issued
    Tuesday, May 15, 2018
    6 years ago
Abstract
According to one embodiment, a threat detection system is integrated with at least a dynamic analysis engine. The dynamic analysis engine is configured to automatically determine whether one or more objects included in received network traffic contains a heap spray attack. Upon detection of a potential heap spray attack, the dynamic analysis engine may copy potential shellcode within an object included in the received network traffic, insert the copy of the potential shellcode into a second region of allocated memory and analyze the execution of the potential shellcode to determine whether characteristics associated with an exploit are present.
Description
FIELD

Embodiments of the disclosure relate to the field of cyber-security. More specifically, one embodiment of the disclosure relates to a system, apparatus and method for detecting malware utilizing shellcode in an attack by extracting potential shellcode, executing the potential shellcode in a virtual machine (VM) and observing unexpected behaviors or activities of the potential shellcode.


GENERAL BACKGROUND

Over the last decade, malicious software has become a pervasive problem for Internet users as many networked resources include vulnerabilities that are subject to attack. For instance, over the past few years, more and more vulnerabilities are being discovered in software that is loaded onto network devices, such as vulnerabilities within operating systems for example. While some vulnerabilities continue to be addressed through software patches, prior to the release of such software patches, network devices will continue to be targeted for attack by malware, namely information such as computer code that attempts during execution to take advantage of a vulnerability in computer software by acquiring sensitive information or adversely influencing or attacking normal operations of the network device or the entire enterprise network.


In particular, a technique known as “heap spraying” allows an exploit residing within software of a network device to more easily take advantage of a vulnerability within software (e.g., an application or an operating system) running on the network device. During a heap spray attack, an exploit inserts a portion of code including a sequence of No Operation (NOP) instructions and a sequence of bytes at a particular location within memory of the network device. The sequence of bytes may be directed at performing malicious activity, wherein the sequence of bytes may be in the form of code, commonly referred to as “shellcode.” This particular location is a predictable memory location within a heap (e.g., a predetermined amount of virtual memory allocated for the software). Once code has been inserted into the heap, the exploit may be triggered during processing which causes the application to execute the shellcode thereby allowing the exploit to assume control of the execution of code on the network device. This enables the attacker to execute instructions on the network device which may be malicious to the network device, to its content or to the owner of the network device. Heap spray attacks use chunks of No Operation (NOP) instructions, also known as NOP sleds, to facilitate the execution of the shellcode. By orienting a NOP sled at an address just prior to shellcode, the execution flow of the processing unit of the network device is quickly directed to the shellcode.


The NOP instructions may be a sequence of known instructions (e.g., “patterns”). Conventional heap spray detection methods attempt to identify heap spray attacks by detecting the NOP sleds and comparing the sequence of NOP instructions to NOP instructions appearing on a list of permitted (and non-malicious) NOP instructions. Such a list may be referred to as a “whitelist” of NOP instructions. Those sequences of NOP instructions found on the whitelist are dismissed as non-malicious. However, those sequences of NOP instructions found in the heap but not found on the whitelist are flagged as a NOP sled portion of a heap spray attack.


Several issues with a detection strategy using a whitelist of NOP instructions exist. First, comparing sequences of NOP instructions to NOP instructions appearing on a whitelist results in a high number of false positives as a whitelist rarely contains all possible permitted or non-malicious NOP instructions. Several non-malicious NOP instructions not appearing on the whitelist may reside in received network traffic. This in turn prompts the detection system to improperly flag one or more objects within the network traffic as containing a heap spray attack and return a false positive to a network administrator.


Second, as false positives are reported, the NOP instruction that caused the false positive is typically added to the whitelist in order to prevent future false positives based on that particular non-malicious NOP instruction. However, a whitelist of all possible non-malicious NOP instructions is untenable because such as list would require constant updating.


During execution of malware, one or more portions of the computer code that contain an exploit may not be executed for various reasons. For example, the application containing or associated with the malware may crash prior to the execution of the exploit. When the exploit does not execute, it may go undetected. In particular, when a heap spray attack is being utilized to facilitate exploitation of a vulnerability, at least a portion of shellcode may not execute therefore allowing at least a portion of an exploit to go undetected. Therefore, there is a need for a way to improve detection of exploits that utilize shellcode.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is an exemplary block diagram of an operational flow of threat detection and prevention within a network device.



FIG. 2A is an exemplary block diagram of a communication system deploying a plurality of threat detection and prevention (TDP) systems communicatively coupled to a management system via a network.



FIG. 2B is a second exemplary block diagram of a communication system deploying a plurality of threat detection and prevention (TDP) systems communicatively coupled to a management system via a network.



FIG. 3 is an exemplary block diagram of a monitoring logic to monitor the allocation of virtual memory for an application within a virtual machine (VM).



FIG. 4A is an exemplary graph plotting time over memory illustrating the memory allocation for an instance of an application executing in a virtual machine (VM).



FIG. 4B is a second exemplary graph plotting time over memory illustrating the memory allocation for an instance of an application executing in a virtual machine (VM).



FIG. 5 is a flowchart of an exemplary method for detecting a heap spray attack based on the detection of a blacklisted pattern.



FIGS. 6A-6D are flowcharts illustrating an in-depth exemplary method for detecting a heap spray attack based on the detection of a blacklisted pattern.



FIG. 7 is a flowchart of an exemplary method for detecting a new NOP sled pattern.



FIG. 8 is an exemplary block diagram of a virtual heap allocated for an application executing an object included in received network traffic.



FIG. 9 is an exemplary block diagram of logic associated with the threat detection and prevention (TDP) system of FIGS. 2A-2B.



FIG. 10 is an exemplary illustration of a network device configured with a heap spray detection logic.



FIG. 11 is an exemplary block diagram of a virtual execution logic configured with shellcode validation logic.



FIG. 12 is a flowchart of an exemplary method for validating shellcode.



FIG. 13 is an exemplary illustration of a network device configured with a heap spray detection logic and a shellcode validation logic.





DETAILED DESCRIPTION

Various embodiments of the disclosure relate to a network device, such as a threat detection and prevention (TDP) system for example, where the network device comprises an optional static analysis engine and a dynamic analysis engine. According to one embodiment of the disclosure, the static analysis engine filters information from received network traffic and analyzes the information to determine whether at least a portion of the received network traffic is likely to be associated with malware. A portion of the received network traffic, (hereinafter “object(s)”), that is determined to likely be associated with malware is deemed “suspicious.” The dynamic analysis engine comprises virtual execution logic to automatically analyze one or more objects while the object(s) executes within a virtual machine. In particular, the dynamic analysis engine comprises logic to analyze the memory allocation for the object(s) in order to detect a potential heap spray attack.


Upon the detection of a potential heap spray attack, if the dynamic analysis engine detects the presence of suspicious code that is possibly shellcode within the object(s), the dynamic analysis engine extracts a copy of the potential shellcode and inserts the copy into a new region of memory allocated for further analysis of the copy. Furthermore, the permissions of the new region of memory allocated for the further analysis are established to ensure the execution of the copy is able to execute. With the permissions explicitly set to read and execute, the copy is more likely to execute than the original version of the potential shellcode. This gives the logic within the dynamic analysis engine a higher probability (opportunity) to analyze the execution of the potential shellcode and detect anomalous behavior thereby indicating a likelihood that the copy is shellcode and associated with malware.


I. Terminology

In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, both terms “logic” and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or engine) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.


Logic (or engine) may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.


The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. During analysis, for example, the object may exhibit a set of expected characteristics and, during processing, a set of expected behaviors. The object may also exhibit a set of unexpected characteristics and a set of unexpected behaviors that may evidence an exploit and potentially allow the object to be classified as an exploit.


Examples of objects may include one or more flows or a self-contained element within a flow itself. A “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session. For convenience, a packet is broadly referred to as a series of bits or bytes having a prescribed format, which may include packets, frames, or cells.


As an illustrative example, an object may include a set of flows such as (1) a sequence of transmissions in accordance with a particular communication protocol (e.g., User Datagram Protocol (UDP); Transmission Control Protocol (TCP); or Hypertext Transfer Protocol (HTTP); etc.), or (2) inter-process communications (e.g., Remote Procedure Call “RPC” or analogous processes, etc.). Similar, as another illustrative example, the object may be a self-contained element, where different types of such objects may include an executable file, non-executable file (such as a document or a dynamically link library), a Portable Document Format (PDF) file, a JavaScript file, Zip file, a Flash file, a document (for example, a Microsoft Office® document), an electronic mail (email), downloaded web page, an instant messaging element in accordance with Session Initiation Protocol (SIP) or another messaging protocol, or the like.


An “exploit” may be construed broadly as information (e.g., executable code, data, command(s), etc.) that attempts to take advantage of a software vulnerability. Typically, a “vulnerability” is a coding error or artifact of software (e.g., computer program) that allows an attacker to alter legitimate control flow during processing of the software (computer program) by a network device, and thus, causes the network device to experience undesirable or unexpected behaviors. The undesired or unexpected behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of an network device executing application software in a malicious manner; (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context. To illustrate, a computer program may be considered as a state machine, where all valid states (and transitions between states) are managed and defined by the program, in which case an exploit may be viewed as seeking to alter one or more of the states (or transitions) from those defined by the program.


Malware may be construed broadly as computer code that executes an exploit to take advantage of a vulnerability, for example, to harm or co-opt operation of a network device or misappropriate, modify or delete data. Conventionally, malware is often said to be designed with malicious intent. An object may constitute or contain malware, for example, shellcode, which may be injected into a heap during a heap spray attack.


The term “shellcode” refers to a small piece of executable code that resides in data (e.g., is injected into data), is used as a payload of malware, and, in some cases, contains a shell command to execute an exploit.


The term “transmission medium” is a physical or logical communication path between two or more network devices (e.g., any devices with data processing and network connectivity such as, for example, a security appliance, a server, a mainframe, a computer such as a desktop or laptop, netbook, tablet, firewall, smart phone, router, switch, bridge, etc.). For instance, the communication path may include wired and/or wireless segments. Examples of wired and/or wireless segments include electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), or any other wired/wireless signaling mechanism.


In certain instances, the term “detected” is used herein to represent that there is a prescribed level of confidence (or probability) on the presence of an exploit or heap spray attack within an object under analysis. For instance, the virtual execution logic may detect the presence of a heap spray attack by monitoring or observing unexpected or anomalous behaviors or activities, and, in response, determining that the object includes a heap spray attack.


The term “pattern” should be construed as a predefined sequence of instructions. A pattern may appear in memory, such as memory allocated in a virtual execution environment for use by an application being executed by a virtual machine. In some embodiments, the length of the pattern may correspond to the operating system of the network device which is undergoing analysis. For example, a pattern may consist of four bytes when the network device is running a 32-bit operating system (this may be referred to as a double word, or “DWORD”). Therefore, the DWORD may contain up to four (4) instructions, which may be four (4) NOP instructions, for example. Alternatively, a pattern may consist of eight bytes when the network device is running a 64-bit operating system (this may be referred to as a quad word, or “QWORD”). Therefore, the QWORD may contain up to eight (8) instructions, which may be eight (8) NOP instructions, for example.


In addition, a blacklisted pattern is a pattern that has been preselected and placed on a list comprising one or more preselected patterns. A blacklist may be used in a comparison to, among other things, determine whether the particular item in the comparison needs to be flagged as being associated with a malicious attack.


The term “NOP sled” should be construed as a sequence of NOP instructions constituting a pattern. A NOP sled may also be a sequence of instructions that collectively do not change the state of the process when executed. Accordingly, while an individual instruction within the NOP sled may change the state of the process, another instruction in the NOP sled would operate to reverse that change, yielding no net change of state. NOP sleds are commonly used with heap spray attacks in order to facilitate the execution of shell code.


The term “network device” should be construed as any electronic device with the capability of connecting to a network. Such a network may be a public network such as the Internet or a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks. Examples of a network device may include, but are not limited or restricted to, a laptop, a mobile phone, a tablet, a computer, etc.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. Also, the terms “compare” or “comparison” generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular signature pattern.


Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


The invention may be utilized for detection, verification and/or prioritization of malicious content such as exploits and/or heap spray attacks. As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


II. Heap Spray Detection within a TDP System

A. Heap Spray Detection Methodology


Referring to FIG. 1, an exemplary block diagram of an operational flow for heap spray detection by a network device 100 (e.g., a TDP system) is shown. Herein, some or all of the incoming objects 110 associated with monitored network traffic are received by virtual execution logic 270, which is part of a dynamic analysis engine 130 (see FIGS. 2A-2B), either directly or via an optional static analysis engine 120. According to one embodiment of the disclosure, when deployed in the network device 100, the static analysis engine 120 is configured as a capture and filter device that receives the incoming objects 110 and conducts heuristics, exploit signature checks and/or vulnerability signature checks on some or all of the objects 110, as described below, to identify “suspicious” objects having one or more characteristics associated with an exploit.


The virtual execution logic 270 conducts an in-depth analysis of an object, for example, each suspicious object, of the incoming objects 110 by creating and executing an instance of an application to virtually process the object and analyze, for example, the application's memory allocation and, if triggered, patterns detected within the allocated memory. The virtual execution logic 270 may compare the amount of memory allocated to a predetermined threshold over a predefined time interval and compare detected patterns with either patterns known to be associated with heap spray attacks or patterns known to be non-malicious.


Upon conducting at least an analysis of (i) the memory allocation for an application used to process the suspicious object of the incoming objects 110 and if triggered, (ii) detected patterns stored within memory allocated to the process, the dynamic analysis engine 130 provides the results 150 of its analysis (referred to herein as “VM-based results”) to reporting logic 160 for storage in database 255 and subsequent access. If implemented as part of the network device 100, the static analysis engine 120 provides results 140 of its analysis (referred to herein as “static-based results”) to reporting logic 160 for storage in database 255 and subsequent access.


Thereafter, at least portions of the static-based results 140 and the VM-based results 150 for the incoming objects 110 may be combined by the reporting logic 160. The reporting logic 160 may issue an alert or report 170 (e.g., an email message, text message, display screen image, etc.) to security administrators for example, communicating the urgency in handling one or more detected heap spray attacks. Alternatively, the alert or report 170 may trigger a further analysis of the object to verify the behavior of the object as an exploit.


According to one embodiment of the disclosure, the communicative coupling between the static analysis engine 120 and the dynamic analysis engine 130 is provided in a serial configuration, where the incoming object(s) 110 (or a copy thereof) may be processed in the virtual execution logic 270 after analysis by the static analysis engine 120. However, it is contemplated that the static analysis engine 120 and the dynamic analysis engine 130 may be provided in a parallel configuration, where the incoming object(s) 110 (or copy thereof) may be processed in the virtual execution logic 270 concurrently with analysis of objects by the static analysis engine 120.


B. General Architecture of Network Device Deploying Heap Spray Detection Logic


Referring to FIG. 2A, an exemplary block diagram of a heap spray detection environment 200 deploying a plurality of threat detection and prevention (TDP) systems 2101-210N (N>1, e.g., N=3) communicatively coupled to a management system 220 via a network 225 is shown. The heap spray detection environment 200 comprises a server device 232, an optional firewall 236, a client device 234 and a TDP system 2101 communicatively coupled to the network 230 via a network interface 238. The TDP system 2101 is further communicatively coupled to the management system 220 and one or more TDP systems 2102-2103 via the network 225. In general, management system 220 is adapted to manage TDP systems 2102-2103. For instance, management system 220 is responsible for automatically updating a blacklist of NOP instruction patterns used by the virtual execution logic 270 within some or all of TDP systems 2101-210N.


Herein, according to the embodiment illustrated in FIG. 2A, a first TDP system 2101 is a network device that is adapted to analyze information associated with network traffic routed over a communication network 230 between at least one server device 232 and at least one client device 234. The communication network 230 may include a public network such as the Internet, in which case an optional firewall 236 (represented by dashed lines) may be interposed in the communication path between the public network and the client device 234. Alternatively, the communication network 230 may be a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks.


As shown, the first TDP system 2101 may be communicatively coupled with the communication network 230 via a network interface 238. In general, the network interface 238 operates as a data capturing device (sometimes referred to as a “tap” or “network tap”) that is configured to receive data propagating to/from the client device 234 and provide at least some of this data to the first TDP system 2101. Alternatively, as shown in FIG. 2B, the first TDP system 2101 may be positioned behind the firewall 236 and in-line with client device 234.


According to one embodiment of the disclosure, the network interface 238 is capable of receiving and routing objects associated with network traffic to the first TDP system 2101. The network interface 238 may provide the entire object or certain content within the object, for example, one or more files that are part of a set of flows, packet payloads, or the like. In some embodiments, although not shown, network interface 238 may be contained within the first TDP system 2101.


It is contemplated that, for any embodiments where the first TDP system 2101 is implemented as a dedicated appliance or a dedicated computer system, the network interface 238 may include an assembly integrated into the appliance or computer system that includes a network interface card and related logic (not shown) for connecting to the communication network 230 to non-disruptively “tap” network traffic propagating through firewall 236 and provide either a duplicate copy of at least a portion of the network traffic or at least a portion the network traffic itself to the dynamic analysis engine 130 and the optional static analysis engine 120, if included within the TDP system 2101. In other embodiments, the network interface 238 can be integrated into an intermediary device in the communication path (e.g., firewall 236, router, switch or other networked network device, which in some embodiments may be equipped with Switched Port Analyzer “SPAN” ports) or can be a standalone component, such as an appropriate commercially available network tap. In virtual environments, a virtual tap (vTAP) can be used to duplicate files from virtual networks.


As further shown in FIG. 2A, the first TDP system 2101 comprises the optional static analysis engine 120, a scheduler 260, a storage device 265, the dynamic analysis engine 130, a classification engine 280 and the reporting logic 160.


In some embodiments, as shown in FIGS. 2A-2B, the static analysis engine 120 may include one or more software modules that, when executed by one or more processors, performs static scanning on a particular object, namely heuristics, exploit signature checks and/or vulnerability signature checks for example. The static analysis engine 120 and the dynamic analysis engine 130 may be one or more software modules executed by the same processor or different processors, where these different processors may be located within the same processor package (e.g., different processor cores) and/or located at remote or even geographically remote locations that are communicatively coupled (e.g., by a dedicated communication link) or a network.


More specifically, as shown, static analysis engine 120 may be configured with heuristics logic 250, exploit matching logic 252, and/or vulnerability matching logic 253. Heuristics logic 250 is adapted for analysis of certain portions of an object under analysis to determine whether any portion corresponds to either (i) a “suspicious” identifier such as either a particular Uniform Resource Locator “URL” that has previously been determined as being associated with known exploits, a particular source or destination OP or MAC) address that has previously been determined as being associated with known exploits; (ii) a particular exploit pattern; or (iii) a particular shellcode pattern. When deployed, the exploit matching logic 252 may be adapted to perform exploit signature checks, which may involve a comparison of an object under analysis against one or more pre-stored exploit signatures (e.g., pre-configured and predetermined attack patterns) from signature database 251. Additionally or in the alternative, the static analysis engine 120 may be configured with vulnerability matching logic 253 that is adapted to perform vulnerability signature checks, namely a process of uncovering deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, TCP, etc.). The term “signature” designates an indicator of a set of characteristics and/or behaviors exhibited by one or more exploits that may not be unique to those exploit(s). Thus, a match of the signature may indicate to some level of probability, often well less than 100%, that an object constitutes an exploit. In some contexts, those of skill in the art have used the term “signature” as a unique identifier or “fingerprint,” for example, of a specific virus or virus family (or other exploit), which is generated for instance as a hash of its machine code, and that is a special sub-case for purposes of this disclosure.


The score determination logic 278 (which will be discussed in further detail below) may be implemented within the static analysis engine 120 to generate a score that represents a probability (or level of confidence) that the object under analysis is associated with a malicious attack. For instance, the score may be based, at least in part, on (i) pattern matches; (ii) heuristic or determinative analysis results; (iii) analyzed deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, TCP, etc.); (iv) analyzed compliance with certain message formats established for the protocol (e.g., out-of-order commands); and/or (v) analyzed header or payload parameters to determine compliance. Where the score exceeds a prescribed value, the object under analysis is deemed “suspicious”; and where it exceeds another, higher prescribed value, the object under analysis may be classified as malware.


The classification engine 280 may be configured to receive the static-based results 140 (e.g., results from static analysis, metadata associated with the incoming network traffic, etc.) and/or the VM-based results 150. According to one embodiment of the disclosure, the classification engine 280 comprises prioritization logic 282 and score determination logic 284. The prioritization logic 282 may be configured to apply weighting to results provided from dynamic analysis engine 130 and/or static analysis engine 250. Thereafter, the classification engine 280 may route the classification results 281 comprising the weighting and/or prioritization applied to the static-based results 140 and/or the VM-based results 150 to the reporting logic 160. The classification results 281 may, among others, classify any malware and/or exploits detected into a family of malware and/or exploits, describe the malware and/or exploits and provide the metadata associated with any object(s) within which the malware and/or exploits were detected. The alert generation logic 256 of the reporting logic 160 may generate an alert for the client device 234 and/or route the alert to the management system 220 via the network 225 for further analysis by a network administrator. In addition, the reporting logic 160 may store the classification results 281 (including the static-based results 140 and the VM-based results 150) in the database 255 for future reference.


The static analysis engine 120 may route suspicious objects (and, in many cases, even previously classified malicious objects) to the virtual execution logic 270 within dynamic analysis engine 130. The dynamic analysis engine 130 is configured to provide more in-depth analysis of objects included in the received network traffic and/or suspicious object(s) from the static analysis engine 120 by analyzing the content of the object(s) as well as the memory allocation for an application processing the object(s).


More specifically, if the optional static scanning is conducted, upon its completion, the static analysis engine 120 may provide a suspicious object to the dynamic analysis engine 130 for in-depth dynamic analysis using virtual machines (VMs) 2751-275M (M≥1). For instance, the dynamic analysis engine 130 may simulate transmission and/or receipt of packets or other objects by a destination device comprising the virtual machine. In one embodiment, if the object is not suspected of being an exploit, the static analysis engine 120 may simply denote that the object is non-malicious and no further analysis is conducted.


According to one embodiment, one or more VMs 2751-275M within the virtual execution environment 272 may be configured each with one or more of the software profiles corresponding to the software images stored within storage device 265. Alternatively, the VMs 2751-275M may be configured according to a prevalent software configuration, software configuration used by a network device within a particular enterprise network (e.g., client device 234), or an environment that is associated with the object to be processed, including software such as a web browser application, PDF™ reader application, or the like. However, for a known vulnerability which occurs after a successful match during a vulnerability signature check for example, the VMs 2751-275M may be more narrowly configured to software profiles associated with vulnerable software. For example, a particular version of an application may be used by the VMs 2751-275M.


The scheduler 260 may be adapted to configure the multiple VMs 2751-275M for concurrent virtual execution of a variety of different versions of the software in efforts to detect whether an object included within the received network traffic is attempting to utilize a heap spray attack. Of course, it is contemplated that the VM configuration described above may be handled by logic other than the scheduler 260. For instance, although not shown, the static analysis engine 120 and/or dynamic analysis engine 130 may include configuration logic to handle VM configuration as well.


The dynamic analysis engine 130 is adapted to execute one or more VMs 2751-275M to detect an attempt to utilize a heap spray attack by simulating the execution of an object under analysis within a run-time environment as expected by the type of object. For example, the dynamic analysis engine 130 analyzes the received network traffic and determines which application is suitable for executing an object of the received network traffic within one or more VMs 2751, . . . , and/or 275M. The monitoring logic 276 instantiates an instance of the application within the virtual execution environment 272 to open/execute the object. The monitoring logic 276 monitors the allocation of memory for the application and is equipped with a software agent or other executable module located within the virtual environment. The software agent or other executable module operates in conjunction with the application instance 310 (i.e., process) to obtain information and perform various tasks for the monitoring logic 276 such as, among others, detecting activities initiated by the application 310 and obtaining information required in detecting potential shellcode and/or anomalous behavior indicative of an exploit.


Furthermore, in one embodiment, the monitoring logic 276 may be implemented as one or more software modules. For instance, as is seen in FIG. 9, the monitoring logic 276 may comprise a memory determination module 940 to determine whether an amount of memory allocated for an application exceeds a predetermined threshold over a predetermined time interval, a scanning module 942 to scan the region of allocated memory for a pattern of instructions in response to determining the amount of allocated memory exceeds the predetermined threshold, and a heap spray determination module 944 to determine, based on the scanning, whether characteristics of a heap spray attack have been detected.


Referring to FIG. 3, an exemplary block diagram of the monitoring logic 276 to monitor the allocation of virtual memory for an application within a VM 2751 is shown. In the embodiment shown, virtual execution logic 270 is shown to include the monitoring logic 276, a score determination logic 278 and virtual execution environment 272 containing VM 2751. In the illustration, the monitoring logic 276 opens an instance of an application 310 (for example, a browser such as Internet Explorer®) through an open process operation 300. The open process operation 300 creates a handle 301 which enables the monitoring logic 276 to monitor the memory allocated for application 310. The monitoring logic 276 may then obtain information about virtual memory allocated for the application 310 through the use of queries, such as a Windows® system call for example. Examples of information the queries may return include, but are not limited or restricted to, (i) the size of the region of virtual memory allocated, (ii) the size of particular blocks of memory within the region of virtual memory allocated, (iii) addresses of particular blocks of memory within the region of virtual memory allocated, and/or (iv) the permissions of particular blocks of memory within the region of virtual memory allocated (wherein the permissions may include whether the block of memory is set in a read, write, and/or executable permission).


The monitoring logic 276 observes the application 310 as it allocates a “virtual” heap 320 within VM 2751. The monitoring logic 276 is equipped with a monitoring module 321, e.g., located within the virtual environment, which operates in conjunction with the application instance 310 (i.e., process) to obtain information and perform various tasks for the monitoring logic 276. Examples of tasks performed by the monitoring module 321 include, but are not limited to, performing function call observing (i.e., performs an operation referred to as “hooking” or “intercepting”), detecting potential shellcode, detecting return-oriented programming (ROP), detecting NOP sleds and scanning the allocated virtual heap 320 for patterns not appearing on the blacklist (e.g., “unknown” patterns) to be “learned” such that the previously unknown pattern is added to a pattern blacklist (to be discussed below).


If the allocation of memory exceeds a predetermined threshold, the monitoring logic 276 observes the allocated memory over a predefined time interval. If the allocated memory remains above the predefined threshold for the entirety of the interval, the monitoring logic 276 concludes that the object includes a heap spray attack. The portion of the monitoring logic performing functionalities described above and/or below may be referred to “heap spray detection logic.”


Referring to FIG. 4A, an exemplary graph plotting time over memory illustrating the memory allocation for an instance of an application executing in a virtual machine is shown. In FIG. 4A, the allocation of memory exceeds a predefined threshold when time equals 3 seconds, for example. The predefined threshold may be variable. The allocation of memory exceeds the threshold for the entirety of a time interval (for example, Interval 1 is 3-6 seconds in duration). Based on the graph depicted in FIG. 4A, the monitoring logic 276 observing the memory allocation would assign a memory allocation score to the object, the memory allocation score signifying a first probability that the object that made the call is associated with a heap spray attack.


Referring to FIG. 4B, a second exemplary graph plotting time over memory illustrating the memory allocation for an instance of an application executing in a virtual machine is shown. In FIG. 4B, the allocation of memory exceeds a predetermined threshold when time equals 3 seconds. In contrast to FIG. 4A, the allocation of memory does not exceed the threshold for the entirety of the interval (e.g., Interval 2 is 3-6 seconds in duration). Based on the graph depicted in FIG. 4B, the monitoring logic 276 observing the memory allocation would disregard the event of the memory allocation initially exceeding the threshold and not assign a memory allocation score to the object based on the memory allocation for the application (or alternatively would assign a memory allocation score of zero).


As an example, the monitoring logic 276 may determine that a PDF file is included within the received network traffic and therefore instantiate an instance of Adobe® Reader®. The monitoring logic 276 opens the PDF file using Adobe® Reader® within virtual execution environment 272 and monitors the amount of memory allocated for Adobe® Reader®. If the amount of memory allocated exceeds a predetermined threshold for the entirety of a prescribed time interval, such as a three (3) second interval for example, the monitoring logic 276 concludes that the PDF file includes a heap spray attack. The monitoring logic 276 may then assign a memory allocation score indicating a potential heap spray attack to the object. However, if the allocated memory dips below the predetermined threshold during the prescribed time interval, the monitoring logic 276 disregards the event (the allocated memory exceeding the predetermined threshold) as a mere spike in allocated memory for an action such as downloading a large image over the network 230 (or alternatively, or in addition, assign a memory allocation score of zero).


When a heap spray attack is initially determined to be present in the object based on the memory allocation for an application used to execute the object, the monitoring logic 276 may scan the allocated memory for patterns appearing on a predetermined blacklist. Based on the information obtained from queries about the allocated virtual memory, the monitoring logic 276 may exclude certain portions of the allocated virtual heap 320. For example, the monitoring logic 276 may exclude those blocks of memory having their permissions set to “read” and execute only as a heap spray attack will only insert code into blocks of memory having permission set to, at least, “write.” Therefore, if a block of memory not having permissions set to, at least, “write,” the monitoring logic 276 may exclude that block of memory from its scan as code that is part of a heap spray attack will not have been injected into that block of memory. This allows the monitoring logic 276 to increase the efficiency of the scan.


Referring to FIG. 5, a flowchart of an exemplary method for detecting a heap spray attack based on the detection of a blacklisted pattern is shown. In block 501, once a heap spray attack is determined to be present in an object, the monitoring logic 276 scans the memory allocated for the object for regions of memory at least a predetermined size (FIG. 5 uses a prescribed size of, for example, 128 kilobytes (Kb), though other sizes may be used in some embodiments). In block 502, for each region of memory of at least the prescribed size, the monitoring logic 276 scans for a pattern appearing on a predetermined blacklist of patterns at a predefined number of positions within the region of memory. The predefined number may be set to any value, such as, for example, three or four, where the predefined number is a static value or variable.


If a blacklisted pattern is not found (no at block 503), the scan ends for the current region and the monitoring logic 276 proceeds to analyze the next region of memory of at least the prescribed size (block 504). If a blacklisted pattern is detected (yes at block 503), the monitoring logic 276 scans the rest of the current region for the detected pattern (the “first pattern”) (block 505).


Thereafter, if a predetermined number of the first pattern is not found in a contiguous manner (no at block 506), the scan ends for the current block and the monitoring logic 276 proceeds to analyze the next block of memory of at least the prescribed size (block 507). However, if a predetermined number of the first pattern is found in a contiguous manner (yes at block 506), the monitoring logic 276 scans the remainder of the current block of memory for a sequence including a NOP sled followed by potential shellcode followed by another NOP sled (herein referred to as a “NOP sled/potential shellcode/NOP sled sequence”) (block 508). The NOP sleds are a contiguous repetition of the first pattern, and the potential shellcode represents an interruption in the sequence of NOP sleds. Alternatively, the monitoring logic 276 may scan the current block of memory for a predefined number of NOP sleds instead of a NOP sled/potential shellcode/NOP sled sequence length. If a NOP sled/potential shellcode/NOP sled sequence of a predefined length is not found (no at block 509), the scan ends for the current block and the monitoring logic 276 proceeds to analyze the next block of memory of at least the prescribed size (block 510). If a NOP sled/potential shellcode/NOP sled sequence of a predefined length is found (yes at block 509), an alert signaling the presence of a heap spray attack in the object is generated (block 511).


Referring to FIGS. 6A-6D, flowcharts illustrating an in-depth exemplary method for detecting a heap spray attack based on the detection of a blacklisted pattern are shown. As shown in FIG. 6A, in block 601, the analysis of an object begins as a result of an initial detection of a heap spray attack based on the memory allocation for an application over a predefined time interval used to execute the object. In block 602, the monitoring logic 276 scans the memory allocated for the object within the virtual execution environment 272 (as discussed above) for blocks of memory of at least a predetermined size.


Upon detecting one or more blocks of memory of at least a predetermined size, the monitoring logic 276 scans each block of memory of at least a predetermined size at four predefined positions to locate a blacklisted pattern, unless the monitoring logic 276 has concluded that a heap spray attack is present in the object prior to such scanning. Of course, as stated above, the number of predefined positions may vary and, as an illustrative example, four predefined positions are used in FIG. 6A.


In block 603, the monitoring logic 276 determines whether a blacklisted pattern appears at a first predefined position within a first block of memory of at least a predetermined size. The monitoring logic 276 will search the blocks of memory at the predefined positions in sections having a size corresponding to the length of the pattern(s) on the blacklist. The size of each section is referred to as the “search block size”. For example, the search block size may be four bytes when the client device 234 of FIG. 2A or 2B is running on a 32-bit operating system.


In one embodiment, a first predefined position is located within a predefined range of memory following the header such that the first predefined position begins at an address that is offset by a multiple of the search block size from the beginning of the entire region of allocated memory. If no blacklisted pattern appears at the first predefined position, the monitoring logic 276 proceeds to analyze a second predefined position (block 604), which will be discussed below.


If a blacklisted pattern is detected at the first predefined position (yes at block 603), the monitoring logic 276 scans the rest of the block of memory for the detected pattern (position 605). When the monitoring logic 276 has finished scanning the block of memory, if the number of contiguous occurrences of the detected pattern does not exceed a first predetermined threshold (no at block 606), the monitoring logic 276 proceeds to analyze the second predefined position (block 607). If the number of occurrences does exceed the first predetermined threshold (yes at block 606), the monitoring logic 276 marks that the current block of memory includes a potentially valid NOP sled and retrieves the location of potential shellcode (block 608). After retrieving the location of the potential shellcode, the monitoring logic 276 reads from the beginning of the potential shellcode until it encounters at least a predetermined number of contiguous blacklisted patterns (block 609). This would indicate the end of the potential shellcode and the beginning of a NOP sled, thereby forming a NOP sled/potential shellcode/NOP sled sequence. FIG. 6A sets the predetermined number of contiguous blacklisted patterns at two as an example.


If the monitoring logic 276 does not encounter at least the predetermined number of contiguous blacklisted patterns (no at block 610), the monitoring logic 276 proceeds to analyze the second predefined position (block 611). However, if at least the predetermined number of contiguous blacklisted patterns are detected (yes at block 610), the monitoring logic 276 searches the entire block of memory for NOP sleds that include a known pattern (block 612). If the number of NOP sleds detected does not exceed a second predetermined threshold (no at block 613), the monitoring logic 276 proceeds to analyze the second predefined position (block 614). However, if the number of NOP sleds detected is at least equal to the second predetermined threshold (yes at block 613), the monitoring logic determines whether the number of detected NOP sleds is at least equal to a third predetermined threshold (block 615). In an alternative embodiment, the monitoring logic 276 may determine whether the length of a NOP sled/potential shellcode/NOP sled sequence exceeds a predetermined length threshold as compared to determining whether the number of detected NOP sleds exceeds a second predetermined threshold.


If the third predetermined threshold is not met (no at block 615), the monitoring logic 276 determines whether the current block of memory is the last block of memory of at least a predetermined size (block 616). If the current block is the last block of memory of at least a predetermined size (yes at block 616), the monitoring logic 276 proceeds to analyze the second predefined position (block 617). However, if current block of memory is not the last block of memory of at least a predetermined size (no at block 616), the monitoring logic 276 scans the next block of memory of at least the predetermined size for NOP sleds to the current block of memory (block 618). The monitoring logic 276 then loops back to block 615 to evaluate whether the number of NOP sleds found exceeds the third predetermined threshold. If the third predetermined threshold is satisfied (yes at block 615), the monitoring logic 276 generates an event signaling detection of a heap spray attack (block 619). The monitoring logic 276 may assign a blacklist pattern score to the object after determining a heap spray attack may be included in the object based on detection of a NOP sled pattern appearing on the pattern blacklist, the blacklist pattern score signifying a second probability that the object that made the call is associated with a heap spray attack.


Referring to FIG. 6B, a flowchart illustrating the continuation of the in-depth exemplary method for detecting a heap spray attack based on the detection of a blacklisted pattern as depicted in FIG. 6A is shown. In FIG. 6B, the method illustrated mirrors that as described above in accordance with FIG. 6A; however, upon determining a need to terminate the search at the second predefined position, the monitoring logic 276 moves to a third predefined position and continues the scan to locate a blacklisted pattern (as shown in FIG. 6C). In addition, the second predefined position is located at an address that is offset by a multiple of the search block size from the beginning of the entire region of allocated memory, such that predefined position two is offset further in the region of allocated memory than the first predefined position. For example, the second predefined position may be the address that is offset by 512 Kb from the beginning of the region of allocated memory.


Referring to FIG. 6C, a flowchart illustrating the continuation of the in-depth exemplary method for detecting a heap spray attack based on the detection of a blacklisted pattern as depicted in FIGS. 6A-6B is shown. In FIG. 6C, the method illustrated mirrors that as described above in accordance with FIGS. 6A-6B; however, upon determining a need to terminate the search at the third predefined position, the monitoring logic 276 proceeds to analyze a fourth predefined position (as shown in FIG. 6D). In addition, the third predefined position is the address that is offset by the search block size from the end of the entire region of allocated memory. For example, the monitoring logic 276 analyzes the last four bytes of allocated memory if the client device 234 is running on a 32-bit operating system.


Referring to FIG. 6D, a flowchart illustrating the continuation of the in-depth exemplary method for detecting a heap spray attack based on the detection of a blacklisted pattern as depicted in FIGS. 6A-6C is shown. In FIG. 6D, the method illustrated mirrors that as described above in accordance with FIGS. 6A-6C; however, the fourth predefined position is located at an address that is offset by a multiple of the search block size from the end of the entire region of allocated memory. For example, the second predefined position may be the address that is offset by 512 Kb from the end of the region of allocated memory. In addition, upon determining the search should be terminated at the fourth predefined position, the monitoring logic 276 terminates the scan and concludes that a heap spray attack is not present in the object. Thereafter, the monitoring logic 276 may then disregard the partial scan and/or assign a blacklist pattern score of zero to the object. However, if the monitoring logic 276 detects a heap spray attack based on the method illustrated in FIGS. 6A-6D, the monitoring logic 276 may assign a blacklist pattern score to the object.


Although the monitoring logic 276 scans for blacklisted patterns when a heap spray attack is detected based on the memory allocation over a predefined time interval for an application. A NOP sled pattern included in the heap spray attack may go undetected if a pattern that does not appear on the blacklist is included in the exploit. Therefore, a method for detecting new NOP sled patterns has been derived. Furthermore, upon detecting a new NOP sled pattern, the monitoring logic 276 may add the detected new NOP instruction comprising the new NOP sled pattern to the blacklist of patterns, as discussed above. Thus, the monitoring logic 276 has effectively learned a new pattern; therefore, the detection of a new NOP instruction comprising a NOP sled and addition of the detected new NOP instruction to the blacklist of NOP instructions constitutes pattern learning.


Referring to FIG. 7, a flowchart of an exemplary method for detecting a new NOP sled pattern using a technique referred to as “pattern learning” is shown. In block 701, the presence of a heap spray attack has been detected based on the memory allocation over a predefined time interval for an application used to execute an object included in the received network traffic. In block 702, the monitoring module 321, which is operating in conjunction with the monitoring logic 276 (see FIG. 3), detects potential shellcode within the allocated virtual heap 320 but does not detect NOP sleds surrounding the potential shellcode and reports this to the monitoring logic 276.


In block 703, the monitoring module 321 retrieves the location of the potential shellcode and scans the allocated memory in two directions: (1) toward the beginning of the allocated memory starting from the beginning of the potential shellcode, and (2) toward the end of the allocated memory starting from the end of the potential shellcode. If the monitoring module 321 does not find a repeating pattern at both the beginning and end of the potential shellcode (no at block 704), no alert of a new NOP sled pattern is generated (block 705). Alternatively, the monitoring logic 276 may assign a new NOP sled pattern score of zero to the object. However, if the monitoring module 321 finds a repeating pattern at both the beginning and end of the potential shellcode (yes at block 704), an alert signaling that a new NOP sled pattern has been detected may be generated (block 706). In addition, the monitoring logic 276 may assign a new NOP sled pattern score to the object, the new NOP sled pattern score signifying a third probability that the object is associated with a heap spray attack.


In an alternative embodiment, the pattern comprising the new NOP sled pattern is not automatically added to the blacklist of patterns but the alert that is generated is received by the appropriate network administrator (such as the network administrator of the company employing the user of the network device that generated the alert). The network administrator may then determine whether the pattern comprising the potential new NOP sled pattern is actually a pattern likely to be associated with a heap spray attack or whether the alert was generated as a result of a false positive. In one embodiment, if the pattern comprising the potential new NOP sled pattern is determined to likely be associated with a heap spray attack, a configuration file may be created including the new pattern on the blacklist of patterns and the configuration file distributed among one or more network devices. For example, if the network administrator determines the potential new NOP sled pattern should be added to the blacklist of patterns, the network administrator may develop a configuration file including the new pattern on the blacklist and distribute the configuration file to all network devices (TDP systems and/or client devices) deploying the heap spray detection logic.


Referring to FIG. 8, an exemplary block diagram of a virtual heap allocated for an application executing an object included in received network traffic is shown. FIG. 8 illustrates block 703 of FIG. 7 (discussed above). Upon detecting the presence of potential shellcode but without detecting the presence of a NOP sled consisting of a known pattern, the monitoring module 321 retrieves the location of the beginning of the potential shellcode (location 801). The monitoring module 321 then scans the allocated virtual heap 320 for one or more repeating patterns. The scanning is done in two directions represented by (A) and (B) in FIG. 8. Direction A illustrates the monitoring module 321 scanning the allocated virtual heap 320 from the beginning of the potential shellcode, location 801, toward the beginning of the allocated memory. Direction B illustrates the monitoring module 321 scanning the allocated virtual heap 320 from the location in the allocated virtual heap 320 just past the end of the potential shellcode, location 802, toward the end of the allocated virtual heap 320.


Referring back to FIG. 2A, the score determination logic 278 within the dynamic analysis engine 130 may be configured to compute a score based on the execution of the application within the one or more VMs 2751, . . . , and/or 275M. According to one embodiment of the disclosure, the score determination logic 278 comprises one or more software modules that are used to determine a probability (or level of confidence) that the object contains or may instigate a heap spray attack based on an observed “event” (i.e., behavior, such as, for example, a request for memory allocation, detected pattern, etc.) in the runtime environment. As discussed above, the score determination logic 278 may assign one or more of (i) a memory allocation score based on the memory allocation for an application used to execute an object, (ii) a blacklist pattern score based on a detected pattern appearing on a blacklist of patterns, and/or (iii) a new NOP sled pattern score based on a detected new NOP sled pattern. Of course, an overall score may be assigned to the object as a whole by mathematically combining the scores determined by analysis of different content associated with the same object to obtain an overall score for that object. The scores may be given equal weighting or the weighting for one or more observed features (e.g., memory allocation, detected pattern, etc.) may differ from another due to the probability that the observed features are associated with a heap spray attack and the likelihood of a false positive.


According to one embodiment of the disclosure, the overall score, or one or more of (i) a memory allocation score, (ii) a blacklist pattern score, and/or (iii) a new NOP sled pattern score may be used, at least in part, to determine whether the object causes or is otherwise associated with a heap spray attack. Some or all of the VM-based results 150 may be combined with its corresponding static-based results 140 in making this determination.


C. Exemplary Logic Layout of TDP System


Referring now to FIG. 9, an exemplary block diagram of logic associated with the TDP system 2101 of FIGS. 2A-2B is shown. The TDP system 2101 comprises one or more processors 900 that are coupled to the communication interface logic 910 via a first transmission medium 920. Communication interface logic 910 enables communication with other TDP systems 2102-2103 and management system 220 of FIG. 2A-2B. According to one embodiment of the disclosure, the communication interface logic 910 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, communication interface logic 910 may be implemented with one or more radio units for supporting wireless communications with other network devices.


The processor(s) 900 is further coupled to the persistent storage 930 via the transmission medium 925. According to one embodiment of the disclosure, the persistent storage 930 may include (i) the static analysis engine 120 including the signatures database 254, the vulnerability matching logic 253, the exploit matching logic 252 and the heuristics logic 250; (ii) the dynamic analysis engine 130 including the virtual execution logic 272, the monitoring logic 276 and the score determination logic 278; and (iv) the reporting logic 160. Of course, when implemented as hardware, one or more of these logic units could be implemented separately from each other.


The static analysis engine 120, if included, comprises one or more software modules that conduct a first static analysis on one or more incoming objects. As described above, this analysis may involve performing at least exploit signature checks and vulnerability signature checks on each incoming object to determine whether characteristics of any of these objects are indicative of an exploit and/or a heap spray attack. Upon detection that one or more suspicious objects have characteristics of an exploit and/or a heap spray attack, the static analysis engine 120 provides the suspicious object(s) to the virtual execution logic 270.


The virtual execution environment 272 comprises one or more software modules that are used for performing an in-depth, dynamic and real-time analysis of one or more objects included in the received network traffic using one or more VMs. More specifically, the virtual execution environment 272 is adapted to run the VM(s), which virtually processes the content associated with the one or more objects by simulating execution of such content in order to determine the presence of one or more exploits and/or heap spray attacks. Furthermore, the monitoring logic 276 monitors in real-time and may also log at least the memory allocation for predefined time intervals by the VM(s) configured with certain software. The monitoring logic 276 analyzes the allocated memory to detect patterns within the allocated memory that are indicative of a heap spray attack. In essence, the monitoring logic 276 identifies the effects that the object would have had on a physical network device with the same software/feature configuration. Such effects may include, among other things, large memory allocations during a predefined time interval and execution of operations within the allocated memory that would allow for the utilization of a heap spray attack in order to make realization of an exploit within the operating system easier.


Thereafter, according to the observed behavior of the virtually executed content, the monitoring logic 276 may determine that the content is associated with one or more exploits, where the severity of the observed anomalous behavior and/or the likelihood of the anomalous behavior results from an exploit, is evaluated and reflected in a “score” assigned by the score determination logic 278. Processor(s) 900 may invoke the reporting logic 160, which produces an alert for conveying information regarding the detected heap spray attack by the TDP system 2101.


II. Heap Spray Detection within a Network Device

According to an alternative embodiment of the disclosure, a network device may be configured to implement at least a monitoring logic independently of a separate physical device implementing a heap spray detection logic. In other words, a network device may be configured such that it is not reliant on separate physical device to implement the heap spray detection logic.


Referring to FIG. 10, a network device may be configured with a heap spray detection logic. In FIG. 10, for illustrative purposes, the network device is represented as a mobile network device 1000 (e.g., smartphone, tablet, laptop computer, netbook, etc.). The mobile network device 1000 includes a display screen 1010; a receiver and/or transmitter (e.g. transceiver) such as an antenna 1011; and a heap spray detection logic 1021. The heap spray detection logic 1021 includes monitoring logic 1020 which may be equipped with a monitoring module 321 for monitoring operations and other behaviors of an application 310 from within the mobile network device 1000 as described above.


In one embodiment, the heap spray detection logic 1021 may be implemented as a software service within the mobile network device 1000. In such an embodiment, the heap spray detection logic 1021 starts and performs API hooking in order to observe function calls and/or system calls. When a function call or system call is observed, the heap spray detection logic 1021 analyzes the actions taken by the mobile network device 1000 as a result of the function call or system call to determine whether the object that made the call is associated with a heap spray attack. In one embodiment, the heap spray detection logic 1021 may operate as a daemon such that the heap spray detection logic 1021 runs as a background process on the mobile network device 1000. In yet another embodiment, the heap spray detection logic 1021 may be implemented as a software application on the mobile network device 1000.


The heap spray detection logic 1021 may analyze the memory allocation for the application executing the object as a result of the function call or system call. The heap spray detection logic 1021 may analyze information such as (i) the size of the region of memory allocated, (ii) the size of particular regions of memory within the region of memory allocated, addresses of particular regions of memory within the region of memory allocated, and/or (iii) the permissions of particular regions of memory within the region of memory allocated (wherein the permissions may include whether the region of memory is set to be readable, writable, and/or executable).


The heap spray detection logic 1021 observes the application as it allocates memory for a heap. The monitoring logic 1020 is equipped with a monitoring module located within the virtual environment. The monitoring module obtains information and performs various tasks for the monitoring logic 1020 and/or the heap spray detection logic 1021 such as, among others, performing function call hooking, detecting potential shellcode, detecting return-oriented programming (ROP), detecting NOP sleds and scanning the allocated heap for patterns to be added to a pattern blacklist.


If the allocation of memory exceeds a predetermined threshold, the heap spray detection logic 1021 observes the allocated memory over a predefined time interval. If the allocated memory remains above the predefined threshold for the entirety of the predefined time interval, the heap spray detection logic 1021 concludes that the object includes a heap spray attack. Thereafter, an alert signaling that the object that made the call may be associated with a heap spray attack may be generated.


Furthermore, the heap spray detection logic 1021 may scan the memory allocated for the object for a pattern appearing on a predetermined blacklist of patterns at a predefined number of positions within each block of memory of at least a predetermined size. If a blacklisted pattern is found, the heap spray detection logic 1021 scans the rest of the current block for the found pattern (the “first pattern”). Thereafter, if a predetermined number of the first pattern is not found in a contiguous manner, the scan ends for the current block and the heap spray detection logic 1021 proceeds to analyze the next block of memory of at least the predetermined size. However, if a predetermined number of the first pattern is found in a contiguous manner, the heap spray detection logic 1021 scans the remainder of the current block of memory for a predetermined threshold of NOP sleds. If the predetermined threshold of NOP sleds is not satisfied, the scan ends for the current block and the heap spray detection logic 1021 proceeds to analyze the next block of memory of at least the predetermined size. If the predetermined threshold of NOP sleds is satisfied, an alert signaling that the object that made the call may be associated with a heap spray attack may be generated.


Finally, the heap spray detection logic 1021 may be configured to scan the allocated memory for new NOP sled patterns. If determined to likely be associated with a heap spray attack, the pattern comprising the new NOP sled pattern may be added to the blacklist of patterns (the addition of a pattern determined likely to be associated with a heap spray attack may be referred to as “pattern learning”). A monitoring module 321 may detect potential shellcode within the allocated memory but does not detect NOP sleds surrounding the potential shellcode and reports this to the heap spray detection logic 1021. The monitoring module retrieves the location of the potential shellcode and scans the allocated memory in two directions: (1) toward the beginning of the allocated memory starting from the beginning of the potential shellcode, and (2) toward the end of the allocated memory starting from the end of the potential shellcode. If the monitoring module finds a repeating pattern at both the beginning and end of the potential shellcode, an alert signaling a new NOP sled pattern has been detected may be generated. Furthermore, the pattern comprising the new NOP sled pattern may be automatically added to the blacklist of patterns included on the network device deploying the heap spray detection logic. Alternatively, if the pattern is verified to likely be associated with a heap spray attack, a configuration file may be created and distributed to all network devices that connect to network 230 and deploy the heap spray detection logic. Once downloaded on a network device, the configuration file may update the blacklist of the network device to include the new pattern. Therefore, the blacklist of each network device connecting to network 230 and deploying the heap spray detection logic may be updated automatically as new patterns likely to be associated with a heap spray attack are detected.


The one or more alerts generated may be displayed to a user on the display screen 1010. For example, when the allocated memory remains above a predefined threshold for the entirety of a predefined time interval, an alert based on the memory allocation for the application may be displayed on the display screen 1010. Such alerts may present the user with the option to remediate the detected heap spray attack locally, i.e., on the mobile network device 1000, or the option to store the information associated with the detected heap spray attack for remediation by the appropriate network administrator. One example of remediation that may occur locally is a system restore of the mobile network device 1000 to system defaults. Furthermore, the information associated with the detected heap spray attack may be transmitted via the antenna 1011 to the appropriate network administrator. In addition, as discussed above, a score may be assigned based on one or more of (i) the memory allocation for an application used to execute an object, (ii) a detected pattern appearing on a blacklist of patterns, and/or (iii) a detected new NOP sled pattern. The one or more scores may also be displayed on the display screen 1010.


III. Shellcode Validation

A. First Embodiment—TDP System Deploying Heap Spray Detection Logic and Shellcode Validation


Referring to FIG. 11, an exemplary block diagram of a virtual execution logic configured with shellcode validation logic is shown. Herein, the virtual execution logic 270 includes the monitoring logic 276, a shellcode validation logic 1110 and the virtual execution environment 272 which includes VM 2751. In one embodiment, the virtual execution logic 270, as illustrated in FIG. 11, may be incorporated into a TDP system such as TDP system 2101 of FIG. 2A. In the embodiment where the virtual execution logic 270 of TDP system 2101 includes the shellcode validation logic 1110, the monitoring logic 276 conducts an in-depth analysis of at least one object of the incoming objects 110 by instantiating (creating an instance of) and executing an application to virtually execute the object and analyzing behavior of the object during virtual execution.


Before analysis in the VM 2751 begins, the monitoring logic 276 is equipped with a monitoring module 321 operable in conjunction with the virtual heap 320. Upon detection of potential shellcode 1100 within the virtual heap 320, a copy of the potential shellcode 1100 is created by the monitoring logic 276, which will be discussed in more depth below (the copied version will be referred to as “potential shellcode 1121”). The copy is passed to the shellcode validation logic 1110 (represented by line 1101). Thereafter, the shellcode validation logic 1110 requests allocation of a second portion of virtual memory for use in conjunction with its monitoring and analysis activities, and inserts potential shellcode 1121 into this virtual heap 1120 for further analysis (represented by line 1111). A disassembler 1140 of the shellcode validation logic 1110 disassembles the potential shellcode 1121 to determine the location of the first actual instruction of the potential shellcode 1121 (discussed more in-depth below). The shellcode execution logic 1142 of the shellcode validation logic 1110 begins execution of the potential shellcode 1121.


The monitoring module 1144 of the shellcode validation logic 1110 analyzes the behavior of the potential shellcode 1121 during execution within the VM 2751 in the same manner as the monitoring module 321 monitors the behavior of the execution of application 310. When anomalous activity indicative of the potential shellcode 1121 being associated with a malicious attack has been detected, the score determination logic 278 (FIG. 9) may assign a score to the object containing potential shellcode 1100. The score signifying a probability that the object containing the potential shellcode 1100 is associated with, or a portion of, an exploit.


Referring to FIG. 12, a flowchart of an exemplary method for validating potential shellcode is shown, where the operations set forth in FIG. 12 are combined with the logic structures set forth in FIG. 11. In block 1200, the monitoring logic 276 of FIG. 11 detects a potential heap spray attack. As discussed above, a heap spray attack may be detected in one or more ways including: (i) analysis of the memory allocation for an application used to execute an object, (ii) detection of a pattern appearing on a blacklist of patterns, and/or (iii) detection of a new NOP sled pattern.


In block 1201, the monitoring module 321 of FIG. 11 finds the location of the potential shellcode within the virtual heap 320 of FIG. 11. In one embodiment, the potential shellcode location may be determined by recognizing a NOP sled/potential shellcode/NOP sled sequence. By detecting a sequence including a NOP sled followed by a series of bytes other than a NOP instruction followed by another NOP sled (a “NOP sled/potential shellcode/NOP sled sequence” as discussed above), the monitoring module 321 can conclude that the series of bytes other than a NOP instruction surrounded by NOP sleds is likely shellcode, especially if a potential heap spray attack has been detected.


In a second embodiment, if the object is a Portable Document Format (PDF) file, the monitoring module 321 of FIG. 11 may parse JavaScript within the PDF file to reveal the location of potential shellcode. In yet another embodiment, if the object is a PDF file, the monitoring module 321 of FIG. 11 may analyze images embedded within the PDF file to determine the location of potential shellcode. The parsing of the JavaScript or the embedded images within PDF files is done because those are two ways in which a malware writer may insert shellcode into a PDF file. Alternatively, if the object is an Adobe® Flash video (FLV) file, the monitoring module 321 of FIG. 11 may analyze the ActionScript within the FLV file to determine the location of potential shellcode. If the object is a Microsoft® Word® file, such as a file containing a “.docx” file extension, the monitoring module 321 of FIG. 11 may analyze one or more Microsoft® Visual Basic® (VB) scripts or any macros present in the Word® file to determine the location of the potential shellcode.


Referring to both FIG. 11 and FIG. 12, in block 1202 of FIG. 12, the monitoring logic 276 obtains the location of the potential shellcode 1100 from the monitoring module 321 and extracts a copy of the potential shellcode 1100 from the virtual heap 320. In block 1203, the shellcode validation logic 1110 obtains a copy the potential shellcode 1100 (i.e., potential shellcode 1121). The potential shellcode 1121 is typically transferred to shellcode validation logic 1110 as a binary file as this is how the potential shellcode 1100 appears in memory. Furthermore, whether the potential shellcode 1100 is encoded or not does not affect the shellcode validation logic 1110 when the potential shellcode 1121 is transmitted as a binary file. Alternatively, the monitoring logic 276 of FIG. 11 may run a disassembler to disassemble the potential shellcode 1100. The monitoring logic 276 would then output the disassembled content as text to the shellcode validation logic 1110.


In block 1204, the shellcode validation logic 1110 requests memory to be allocated within VM 2751 in which to store the potential shellcode 1121 (the virtual heap of the second region of allocated memory is represented by object 1120 in FIG. 11). Specifically, the shellcode validation logic 1110 requests that the permissions of the second region of allocated memory are set to, at least, read and execute upon allocation. The second virtual heap 1120 is managed by the shellcode validation logic 1110. The potential shellcode 1121 is then inserted within the second virtual heap 1120.


In block 1205, the disassembler 1140 within the shellcode validation logic 1110 disassembles the potential shellcode 1121 to determine the actual starting instruction of the potential shellcode 1121. This allows the shellcode validation logic 1110 to begin execution of the potential shellcode by executing the starting instruction instead of other data or instructions that may have been copied and extracted as part of the copy of the potential shellcode 1110 (such excess data may be referred to as “garbage data”). For instance, in one embodiment, the garbage data may represent data associated with a potential heap spray attack that was copied and included in the potential shellcode 1121 but is not useful in this analysis. In that instance, if the shellcode validation logic 1110 attempts to execute the garbage data, the garbage data may cause the execution of the potential shellcode 1121 to crash if the instruction is an attempt to access memory at an invalid location, for example. Other embodiments may include the first instruction being an instruction reserved only for use by the kernel. Therefore, the disassembler 1140 disassembles the potential shellcode 1121 to determine the location of the actual starting instruction of the potential shellcode 1121 (the location of the first actual instruction is represented by 1130 in FIG. 11).


In block 1206, the shellcode execution logic 1142 of the shellcode validation logic 1110 begins execution of the potential shellcode 1121 at the first instruction. In block 1207, the monitoring module 1144 of the shellcode validation logic 1110 monitors the execution of the potential shellcode 1121. The monitoring module 1144 may observe the behavior of the execution of the potential shellcode 1121 for anomalous activity indicative of the suspect shellcode and associated with a malicious attack (such as a heap spray attack). Examples of anomalous behavior may include, but are not limited or restricted to, attempted modification of the operating system running in the virtual machine, attempted downloads of external computer code, and/or callbacks placed to external servers. If such anomalous activity has been detected, the following may occur in various embodiments: (i) metadata related to the activity is stored in database 255 (FIGS. 2A and 2B); (ii) the shellcode validation logic 1110 may assign a score to the object, or may cause the score generation logic 276 (FIGS. 2A and 2B) to assign a score to the object, signifying a probability that the object containing the potential shellcode 1100 is associated with, or a portion of, an exploit; and (iii) the shellcode validation logic 1110 may communicate the activity to the alert generation logic 276 (FIGS. 2A and 2B), which may generate an alert.


B. Second Embodiment—Network Device Deploying a Heap Spray Detection Logic and Shellcode Validation


According to an alternative embodiment of the disclosure, a network device may be configured to implement at least a monitoring logic independently of a separate physical device wherein the monitoring logic implements a heap spray detection logic and a shellcode validation logic. Referring to FIG. 13, a network device 1300 is shown to incorporate the virtual execution environment 272 including the VM 2751. In FIG. 13, the network device 1300 is represented by, as an illustrative example, a tablet 1300. The tablet 1300 includes a display screen 1315, an antenna 1311 and monitoring logic 1020. The monitoring logic 1020 includes heap spray detection logic 1021 which monitors the behavior of applications from within the tablet 1300.


As discussed above, the heap spray detection logic 1021 performs function call hooking in order to observe API calls and/or system calls. In the embodiment illustrated in FIG. 13, once a function call or system call is observed, the heap spray detection logic 1021 may perform an in-depth analysis of the application that is started as a result of the API call or system call by starting an instance of the application 1303 in VM 2751.


Upon detection of the potential shellcode 1313 within the virtual heap 1320, a copy of the potential shellcode 1313 is extracted by the monitoring logic 1020 (the copied version will be referred to as “potential shellcode 1322”). The copy is then passed to the shellcode validation logic 1310 (represented by line 1301). Thereafter, the shellcode validation logic 1310 requests allocation of a second portion of virtual memory (the virtual heap of the second portion of virtual allocated memory is represented by object 1323), and inserts the potential shellcode 1322 into the virtual heap 1323 for further analysis (represented by line 1314). As discussed above, the disassembler 1340 of the shellcode validation logic 1310 disassembles the potential shellcode 1322 to determine the first instruction of the potential shellcode 1322. In addition, the shellcode execution logic 1342 of the shellcode validation logic 1310 begins execution of the potential shellcode 1322 at the first instruction.


Thereafter, the monitoring module 1344 of the shellcode validation logic 1310 analyzes the behavior of the potential shellcode 1322 during execution within the VM 2751. When anomalous activity indicative of the potential shellcode 1322 being associated with a malicious attack has been detected, the score determination logic 278 (not shown) may assign a score to the object containing potential shellcode 1313. The score signifying a probability that the object containing the potential shellcode 1313 is associated with, or a portion of, an exploit.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. However, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computerized method, comprising: instantiating an instance of an application within a virtual machine, the application for executing an object;allocating a first region of memory to the virtual machine for use in execution of the object with the application;responsive to detecting one or more characteristics of a heap spray attack within a sequence of bytes within the first region of memory, allocating a second region of memory to the virtual machine, wherein the first region of memory is a first virtual heap and the second region of memory is a second virtual heap different than the first virtual heap;copying the sequence of bytes from the first region of memory to the second region of memory;beginning execution, by the virtual machine, of the copy of the sequence of bytes stored in the second region of memory; andmonitoring the execution of the copy of the sequence of bytes to detect characteristics of anomalous behavior.
  • 2. The computerized method of claim 1, wherein the copying of the sequence of bytes comprises requesting allocation of the second region of memory, andinserting the copy of the sequence of bytes into the second region of allocated memory.
  • 3. The computerized method of claim 1, wherein the sequence of bytes is copied and inserted as a binary file.
  • 4. The computerized method of claim 1, wherein a characteristic of the one or more characteristics of the heap spray attack includes at least one sequence of No Operation (NOP) instructions adjacent to the sequence of bytes at a particular location within the first region of allocated memory.
  • 5. The computerized method of claim 4, wherein the sequence of bytes includes potential shellcode, the potential shellcode being computer code that includes one or more characteristics indicative of the capability of performing malicious activity.
  • 6. The computerized method of claim 5, further comprising: prior to copying the potential shellcode from the first region of allocated memory, determining that the potential shellcode is present in the first region of allocated memory.
  • 7. The computerized method of claim 6, wherein a first sequence of NOP instructions is determined to be adjacent to a first side of the potential shellcode, the first sequence of NOP instructions being one of the at least one sequence of NOP instructions.
  • 8. The computerized method of claim 7, wherein a second sequence of NOP instructions is determined to be adjacent to a second side of the potential shellcode, the second sequence of NOP instructions being one of the at least one sequence of NOP instructions.
  • 9. The computerized method of claim 5, further comprising: transmitting the copy of the potential shellcode to a module, wherein the module requests the allocation of the second region of memory and inserts the copy of the potential shellcode into the second region of allocated memory, the permissions of the second region of allocated memory are to be set to allow contents of the second region of allocated memory to be read and executed.
  • 10. The computerized method of claim 9, further comprising: dynamically configuring a virtual machine with a software image representing a current operating state of a targeted client device, the software image representing content and structure of a storage volume for the targeted client device at a time of configuring the virtual machine, wherein the module is located within the virtual machine.
  • 11. The computerized method of claim 10, wherein the module begins execution of the copy of the potential shellcode within the virtual machine.
  • 12. The computerized method of claim 5, further comprising: prior to beginning execution of the copy of the potential shellcode, disassembling the copy of the potential shellcode to determine the starting instruction of the potential shellcode.
  • 13. The computerized method of claim 5, wherein the potential shellcode is copied from a Portable Document Format (PDF) file and at least a portion of JavaScript within the PDF file is parsed to reveal a location of the potential shellcode within the first region of allocated memory.
  • 14. The computerized method of claim 13, wherein one or more images embedded within the PDF file are analyzed to reveal the location of the potential shellcode within the first region of allocated memory.
  • 15. The computerized method of claim 5, wherein the potential shellcode is copied from a video file and at least a portion of the video file is analyzed to reveal a location of the potential shellcode within the first region of allocated memory.
  • 16. The computerized method of claim 5, wherein the potential shellcode is copied from a non-executable file and one or more scripts within the file are analyzed to reveal a location of the potential shellcode within the first region of allocated memory.
  • 17. The computerized method of claim 5, wherein a score is assigned to at least a portion of network traffic from which the potential shellcode was copied, the score signifying a probability that at least the portion of the network traffic is associated with an exploit.
  • 18. The computerized method of claim 5, further comprising: generating an alert based the analysis of the execution of the copy of the potential shellcode.
  • 19. The computerized method of claim 1, wherein prior to detecting the one or more characteristics of the heap spray within the first region of memory, beginning execution of the object using the first region of memory.
  • 20. A system comprising: one or more processors; anda storage module communicatively coupled to the one or more processors, the storage module includes logic to: instantiate an instance of an application within a virtual machine, the application for executing an object;allocate a first region of memory to the virtual machine for use in execution of the object with the application;responsive to detecting one or more characteristics of a heap spray attack within a sequence of bytes within the first region of memory, allocate a second region of memory to the virtual machine, wherein the first region of memory is a first virtual heap and the second region of memory is a second virtual heap different than the first virtual heap;copy the sequence of bytes from the first region of memory to the second region of memory;begin execution, by the virtual machine, of the copy of the sequence of bytes stored in the second region of memory; andmonitor the execution of the copy of the sequence of bytes to detect one or more characteristics of anomalous behavior.
  • 21. The system of claim 20, wherein the sequence of bytes includes potential shellcode, the potential shellcode being computer code that includes one or more characteristics indicative of the capability of performing malicious activity.
  • 22. The system of claim 20, wherein the sequence of bytes is copied and inserted as a binary file.
  • 23. The system of claim 20, wherein a characteristic of the one or more characteristics of the heap spray attack includes at least one sequence of No Operation (NOP) instructions adjacent to the sequence of bytes at a particular location within the first region of allocated memory.
  • 24. The system of claim 23, wherein the sequence of bytes includes potential shellcode, the potential shellcode being computer code that includes one or more characteristics indicative of the capability of performing malicious activity.
  • 25. The system of claim 24, wherein a first sequence of NOP instructions is determined to be adjacent to a first side of the potential shellcode, the first sequence of NOP instructions being one of the at least one sequence of NOP instructions.
  • 26. The system of claim 25, wherein a second sequence of NOP instructions is determined to be adjacent to a second side of the potential shellcode, the second sequence of NOP instructions being one of the at least one sequence of NOP instructions.
  • 27. The system of claim 24, further comprising: transmitting the copy of the potential shellcode to a module, wherein the module requests the allocation of the second region of memory and inserts the copy of the potential shellcode into the second region of allocated memory, the permissions of the second region of allocated memory are to be set to allow contents of the second region of allocated memory to be read and executed.
  • 28. The system of claim 27, further comprising: dynamically configuring a virtual machine with a software image representing a current operating state of a targeted client device, the software image representing content and structure of a storage volume for the targeted client device at a time of configuring the virtual machine, wherein the module is located within the virtual machine.
  • 29. The system of claim 20, wherein prior to detecting the one or more characteristics of the heap spray within the first region of memory, beginning execution of the object using the first region of memory.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority on U.S. Provisional Application No. 62/009,135, filed Jun. 6, 2014, the entire contents of which are incorporated by reference herein.

US Referenced Citations (491)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5842002 Schnurer et al. Nov 1998 A
5978917 Chi Nov 1999 A
6088803 Tso et al. Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6118382 Hibbs et al. Sep 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6417774 Hibbs et al. Jul 2002 B1
6424627 Sørhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6700497 Hibbs et al. Mar 2004 B2
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
6995665 Appelt et al. Feb 2006 B2
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8196205 Gribble et al. Jun 2012 B2
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080032556 Schreier Feb 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080181227 Todd Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100031359 Alme Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100115621 Staniford et al. May 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100205674 Zorn et al. Aug 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120317570 Dalcher Dec 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140245444 Lutas Aug 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20150096025 Ismael Apr 2015 A1
Foreign Referenced Citations (10)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
0223805 Mar 2002 WO
02006928 Aug 2003 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (77)
Entry
Rahman, Mahmud Ab; Getting Owned by Malicious PDF—Analysis; 2010, SANS Institute, pp. 1-39.
U.S. Appl. No. 14/311,035, filed Jun. 20, 2014 Non-Final Office Action dated Jul. 6, 2015.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page.
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumbe-r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
Adobe Systems Incorporated, “PDF 32000-1:2008, Document management—Portable document format—Part1:PDF 1.7”, First Edition, Jul. 1, 2008, 756 pages.
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- estrator . . . , (Accessed on Sep. 15, 2009).
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- esrator . . . , (Accessed on Sep. 3, 2009).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”).
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003).
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Deutsch, P. , “Zlib compressed data format specification version 3.3” RFC 1950, (1996).
Distler, “Malware Analysis: an Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:https://web.archive.org/web/20121022220617/http://www.informationweek- .com/microsofts-honeymonkeys-show-patching-wi/167600716 [retrieved on Sep. 29, 2014].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (IN)Secure, Issue 18, (Oct. 2008), pp. 1-100.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc- &ResultC . . . , (Accessed on Aug. 28, 2009).
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”).
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003).
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/ files/conference/usenixsecurity12/sec12—final107.pdf [retrieved on Dec. 15, 2014].
Marchette, David J “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doom, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015.
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015.
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
Provisional Applications (1)
Number Date Country
62009135 Jun 2014 US