These and other features and advantages of the present embodiments will become more apparent upon reading the following detailed description and with reference to the accompanying drawings of the embodiments, in which:
a is an exploded schematic side view of the clamping mechanism.
b is an exploded schematic front elevational view of the clamping mechanism
a is a schematic side elevational and partial cross-sectional view of the central support member, clamping mechanism, and a shelf of the shower caddy, with the clamping mechanism being shown in a “closed” position;
b is a side cross-sectional view of the vertical column, clamping mechanism, and shelf of the shower caddy, with the clamping mechanism in an intermediate position between closed and open positions;
c is a side cross-sectional view of the vertical column, clamping mechanism, and shelf of the shower caddy, with the clamping mechanism in the “open” position;
d is a schematic front elevational view of the shelving system in which two of the shelves have been adjusted laterally away from their centered position.
An improved shelving system 10 is disclosed herein. The embodiments disclosed herein are described in the context of a shower caddy because the embodiments disclosed herein have particular utility in this context. However, the embodiments and inventions herein can also be applied to types of shelving units configured for other types of environments.
With reference to
Although the illustrated embodiment of the shower caddy 10 has three shelves 16, the skilled artisan will understand that the shower caddy 10 may have only one shelf or as many shelves as will fit on the shower caddy 10. Furthermore, although the shower caddy 10 in the illustrated embodiment has shelves 16 having certain configurations, the skilled artisan will appreciate that the shelves 16 may have different configurations.
As will be described in more detail below, the clamping mechanism 14 can be configured to allow a user to adjust a position of the shelf 16 in addition to holding it in place on the support member 12. In some embodiments, the shelf 16 can be adjusted both in the horizontal and vertical directions. This provides additional advantages in that the shelves can be positioned to accommodate other devices or appliances that may be in a user's shower, as well as various sizes of items, such as toiletries, that may be oversized.
The clamping mechanism 14 can be slidably mounted on the support member 12 in the vertical or longitudinal direction. As shown in
The terms of orientation, as used herein, such as “top,” “bottom,” “horizontal,” “vertical,” “longitudinal,” “lateral,” and “end” are used in the context of the illustrated embodiment. Because other orientations are possible, however, the present invention should not be limited to the illustrated orientation. The skilled artisan will appreciate that other orientations are also possible.
With reference to
The clamp plate 22 can be a generally flat member that is configured to fit through the slot 21 in the clamp body 20, although other configurations can also be used. As shown in
In some embodiments, the clamp plate 22 can be configured to engage the slot 21 so as to prevent the clamp, pale 22 from falling through the slot 21, for example, when the clamp mechanism 14 is open. For example, with reference to
In some embodiments, the plate 22 can include shoulders 23. The shoulders 23 can be arranged to protrude outwardly from the main portion of the clamp plate 22. Additionally, the clamp body 20 an include shoulders 25 configured to rest against the shoulders 23 so as to prevent the clamp plate 22 from falling through the clamp body 20. However, other configurations can also be used.
As shown in
In some embodiments, the lever 24 can include a cam 26 configured to convert the pivotal movement of the lever 24 into a translational movement of the clamp plate 22. For example, the lever 24 can be hinged or otherwise pivotally mounted relative to the clamp body 20, as shown in
Optionally, the cam 26 can include a third portion 26c having a radius R3 which is larger than radius R2. As such, the cam 26 can be configured to provide an “over-center” operation. For example, with the radius R3 being larger than both the radiuses R1 and R2, the cam 26 will generate a maximum pressing force against the clamp plate 22 when the third portion 26c is juxtaposed to the clamp plate 22. However, as is described below in greater detail, this pressing force is reduced as the lever 24 is further pivoted until the second portion 26b is juxtaposed to the clamp plate 22. This provides an advantage in that the user is provided with a tactile signal that the lever 24 has been moved to the fully closed position. Additionally, the lever 24 will move quickly from the intermediate position in which the third portion 26c is juxtaposed to the clamp plate 22 to the fully closed position in which the second portion 26b is juxtaposed to the clamp plate 22.
a shows the lever 24 in the “closed” position, which is when the clamping mechanism 14 is tightened to hold the shelf 16 in place. In this “closed” position, the clamping mechanism 14 is secured to the support member 12 by the pressing force caused by the second portion 26b of the cam 26 pushing against the clamp plate 22, which, in turn, pushes the clamp plate 22 against an outer surface of the support member 12. This pressing force also causes the hooks 15 (
The pressure between the shoulders 22A, 22B of the clamp plate 22 and the cross members 30 as well as the pressure between the hooks 15 of the clamp body 20 and the outer flanges 12A, 12B of the support member 12 secure the shelf 16 in place in both the horizontal and vertical directions. As such, the magnitude of the radius R2 can be determined so as to provide a sufficient pressing force against the clamp plate 22 such that the friction between at least one of the cross members 30, the outer surface of the support member 12, the inner surface of the flanges 12A, 12B, and the hooks 15 is sufficient to support the shelf 16 at the desired location under a maximum load. However, other devices can also be used to secure the shelves 16.
When the lever 24 is in the “open” position, as shown in
The skilled artisan will understand that a user may “open” the lever 24 by pulling it generally in the direction of arrow A, away from the clamp plate 22 and the column 12. When the lever 24 is pulled in this direction, the cam 26 rotates in a clockwise direction (as viewed in
This arrangement provides additional advantages. For example, with reference to
For example, with continued reference to
Additionally, when adjacent shelves are shifted in opposite directions, an even larger space can be provided. For example, as shown in
In operation, to adjust a shelf 16 in the lateral direction, a user can pivot the lever 24 toward the open position (
With reference to
As shown in
The hinge 40 can be configured to allow the loop mechanism 18 to open, as shown in
With reference to
These deformable member 46 can be shaped and tapered such that they fit snugly around a standard shower head pipe 50. Still further advantages can be provided by tapering a lower portion of the member 46.
For example, as shown in
Further, in some embodiments, the tapered shape of the lower portion 46A can be configured to compliment the typical downwardly curved contour of a shower head pipe that emerges from a shower wall 52, such as the shower head pipe 50. Such tapering of the lower portion 46A can allow the shower caddy 10 to hang more straightly.
For example, without the taper in the lower portion 46A, the lower surface of the pipe 50 would generate more pressure on a forward portion 46B of the lower portion 46A. This would generate a torque on the caddy 10, tending to pivot the caddy 10 in the direction of arrow P inwardly toward the shower wall 52. Additionally, the contact patch between such an untapered member 46 would be smaller thereby weakening the grip between the member 46 and the pipe 50.
As shown in
A typical shower head pipe 50 has an outer diameter of about 0.8 inch. In an exemplary but non-limiting embodiment, the loop mechanism 18 has a minimum inner diameter D of about 0.74 inch inner when the member 46 is in a relaxed state, e.g., when the shower caddy 10 is not installed on a shower pipe 50, as shown in
The skilled artisan will appreciate that because the inner diameter D of the loop mechanism 18 is slightly smaller than the outer diameter of a typical shower pipe 50, the rubber inserts 46 will deform slightly and fit snugly around the shower pipe 50 when the loop mechanism 18 is fitted around the shower pipe 50. The skilled artisan will also understand that friction between the rubber inserts 46 and the shower head pipe 50 also helps to keep the shower caddy 10 in place by resisting relative movement between the two, thereby preventing the shower caddy 10 from sliding down the pipe 50.
This snug fit is particularly useful for stabilizing the shower caddy 10 on a shower pipe 50 when the weight of items (e.g., shampoo, soap, etc.) kept on the shelves 16 is not distributed evenly. It has been found that conventional shower caddies do not adequately resist sliding off a shower pipe. Conventional shower caddies configured to hang on a shower pipe typically are simply hung over the shower head pipe with a portion of a wire frame of the caddy and thus may be easily knocked off a shower head pipe 50 either by a user or uneven weight distribution of articles stored on the shower caddy. By providing a hinged loop mechanism 18 at the top of the shower caddy 10, the shower caddy 10 can be more securely and stably attached to a shower head pipe.
It will be understood that the above-noted dimensions are merely exemplary. The dimensions noted above depend on one another. It is also to be understood that one of ordinary skill in the art can readily very the dimensions to adapt the shower caddy 10 for a particular application through routine experimentation, in view of the disclosure herein.
In the illustrated embodiment, the shelves 16 are formed with cross-members 30 extending horizontally across and curved at the ends of the shelves 16 in a substantially semi-circular or “U” shape, as shown in
In the illustrated embodiment, the shelves 16 are configured as a wire basket, as shown in the drawings, to allow for drainage. However, it will be understood that the shelves may have different configurations other than those illustrated.
As shown in
In a some embodiments, the baskets of each shelf 16, 16a, 16b, can be formed of polished stainless steel wire. In an exemplary but non-limiting embodiment, the frame of the basket, including the cross members 30, can be formed of 6 mm polished stainless steel wire. The remainder of the baskets can be formed of 3 mm polished stainless steel wire. However, other materials can also be used.
In some embodiments, other accessories 100 in the form of disks can be attached to the shower caddy 10. The accessories 100 can be formed in the shape of disks having a grove 110 on the peripheral edge.
The width of the groove 110 can be about the same or slightly larger than the outer diameter of the wire forming the substantially semi-circular or U-shaped portions on then ends of the shelves 16 so that the wire of the substantially semi-circular portion fits within the grove 110. The skilled artisan will understand that the disks 100 are sized and shaped to fit in the substantially semi-circular portion, as shown in
The cross-members 30 of the shelves 16 may be pulled apart slightly by the user to snap the disks 100 in place. The skilled artisan will understand that the substantially semi-circular portion of the shelves 16 are preferably slightly greater than 180 degrees to facilitate insertion of the accessories disks 100.
The accessories disks 100 can be formed of a strong, rigid material, such as polycarbonate. The techniques for manufacturing polycarbonate disks are well known in the art and thus no further description of the methods for manufacturing the disks 100 are necessary for one of ordinary skill in the art. However, such accessories disks 100 can be made from a variety of other suitable materials and in a variety of known manners.
The shower caddy 10 can be further secured to the shower wall 52 with an attachment mechanism at the bottom of the shower caddy 10 to provide additional stability. It will be understood that an attachment mechanism at the bottom of the shower caddy 10 also helps to prevent movement of the shower caddy 10 if, for example, a user accidentally contacts the caddy 10 or if the weight of items stored on the caddy 10 is shifted to one side.
As shown in
The suction cup 90 can be rotatably attached to lower end of the support member 12 by the mechanism 92 or some other mechanism allowing for at least lateral adjustment of the position of the suction cup 90 with respect to the wall 52. In some embodiments, the mechanism 92 can be configured to provide both lateral (e.g., generally perpendicular to the longitudinal axis of the support member 12) and longitudinal (e.g., generally parallel to the longitudinal axis of the support member 12) adjustment of the position of the suction cup 90.
The suction cup 90 can be configured to grip a substantially flat, planar surface. As mentioned above, suction cups positioned over a grout line or another type of break or irregularity in the shower wall may not generate a satisfactory seal with a suction cup. Thus, the mechanism 92 can be configured to allow movement of the suction cup 90, without adjusting the position of the shower caddy 10, so that a user may avoid positioning the suction cup 90 over a grout line or some other type of break or irregularity in the shower wall 52.
Thus, in some embodiments, the suction cup 90 can be configured to be moveable such that it can be positioned over a smoother portion of the shower wall 52, thereby providing a strong and secure attachment to the wall 52.
In the illustrated embodiment, the mechanism 92 includes a pivot arm 94 having an upper end 96 pivotally mounted to the lower end of the support member 12 and a lower end 98 connected to the suction cup 90. In this configuration, the suction cup 90 can be pivoted along the arrow 100. As such, the suction cup 90 can be adjusted both in the longitudinal direction and the lateral direction.
The pivot arm 94 can be connected to the support member 12 and the suction cup 90 with any known device or mechanism. In some embodiments, the upper end 96 of the pivot arm can be connected to the support member 12 with a hinged connection. Additionally, in some embodiments, friction can be built into the hinged connection to simplify the process of attaching the suction cup 90 to a shower wall.
In some embodiments, the lower end 98 of the pivot arm can be configured to provide a flexible connection with the suction cup 90. In the illustrated embodiment, the suction cup 90 includes a shaft 102 with an enlarged head 104. The pivot arm, on the other hand, can include a resilient member 106 having an inner diameter, at rest, that is smaller than the outer diameter of the enlarged head 104. As such, the enlarged head 104 can be pressed through and thereby engaged with the resilient member 106. However, this is merely one exemplary but non-limiting manner in which the suction cup 90 can be attached to the support member 12. Any other device, mechanism, or method can also be used.
The skilled artisan will appreciate that, in further embodiments, the shower caddy 10 can be provided with an adjustable suction cup assembly both at the top and the bottom, thereby eliminating the loop mechanism 18. Such alternative embodiments may be secured to the shower wall anywhere as they do not need to be secured to the shower head pipe.
Although these inventions have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while several variations of the inventions have been shown and described in detail, other modifications, which are within the scope of these inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combination or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of at least some of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.