The present invention relates generally to shelving and, more particularly, to brackets and other devices for attaching a shelf or other article support to a support rail or rails.
Adjustable shelving for supporting or displaying articles in a height-adjustable manner typically includes one or two vertical rails with a plurality of vertically-spaced slots for receiving generally L-shaped tabs of a bracket (or a pair of spaced brackets) associated with a support shelf or the like. Such brackets are typically lifted and pulled away from the associated rail in order to disengage the tabs from the corresponding slots.
The present invention provides an article support, such as a shelf, hook or support rod, which is capable of being attached to a support rail in a manner that permits relatively small position adjustment intervals, and in a manner that is resistant to inadvertent or accidental detachment of the article support from the rail. For example, the article support may include a generally planar shelf with a pair of spaced bracket portions, each having a plurality of vertically-aligned and spaced-apart tabs for engaging correspondingly vertically-aligned spaced-apart slots of a pair of vertical support rails. At least one of the tabs comprises a locking tab with a tooth forming a hook or hook portion for engaging (from behind) a slot that is immediately below the slot through which the corresponding locking tab passes. Thus, when removing the shelf from the rails, the shelf is pushed rearwardly in the direction of the vertical support rails to disengage the tooth from the lower slot, and then the shelf is lifted and pulled to move the shelf brackets out of engagement with the support rails. To help secure or retain the shelf at the rails, the shelf may include one or more biasing elements, such as leaf springs, that bias the shelf in a direction away from the vertical support rails. In this manner, the tooth or hook portions of the locking tabs are urged into or maintained in engagement with respective slots of the vertical support rails, so that accidental bumping or jostling of the shelves will generally not disconnect or dislodge them from the support rails.
According to an aspect of the present invention, a shelving system for storage or display of articles includes a generally vertical support with a plurality of generally vertically-spaced slits, and an article-supporting element (such as a shelf, hook or rod) with a support-engaging portion for attaching the article-supporting element to the support. The support-engaging portion couples to the support at the slots formed in the support, and the support-engaging portion further includes a locking tab (such as a generally hook-shaped locking tab) that is inserted into the slots. The locking tab includes a rearward-extending portion, a downward-extending portion, and a tooth-like forward-projecting portion that is spaced from the rearward-extending portion. The forward-projecting portion of the locking tab is configured to engage the support at or near one of the slots in order to limit or prevent unintentional disengagement of the article support from the support. Optionally, the article support is part of a shelving system including one or more of the elongate support rails, and possibly including one or more additional article supports.
Optionally, the article-supporting element includes a biasing element that applies a force urging the article-supporting element away from the elongate support rail, which helps maintain engagement of the forward-projecting tooth portion of the locking tab with the support rail. For example, the biasing element may be a leaf spring that extends rearwardly from the article-supporting element to contact the support rail or a surface to which the support rail is attached.
Thus, the article support or support system of the present invention facilitates a secure attachment of the article support, such as a shelf, support hook or hanger rod, at a plurality of locations along an elongate support rail. A rail-engaging portion of the article support includes at least one locking tab having a hook or tooth portion that engages the support rail from behind, and may further include a spring or other biasing element to urge and maintain the hook or tooth portion of the locking tab into engagement with the support rail. This helps ensure that the article support maintains secure engagement with the support rail or rails, to protect against inadvertent or accidental separation of the article support from the rails. The tooth retention configuration allows for use of multiple, small or closely-spaced slots and tabs, which provides a finely adjustable shelving unit.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Referring now to the drawings and the illustrative embodiments depicted therein, a shelf unit or assembly or system 10 includes one or more support rails 12 that support one or more article supports or shelves 14 (
The shelf assembly 10 may include one or more generally vertical support rails 12, such as at least two spaced apart rails, or three or four or more rails such as shown in
In the illustrated embodiment, shelf 14 comprises brackets 18 at opposite side portions of the supporting platform or region 16, and is mountable at or attachable at a pair of spaced-apart support rails 12. The shelf 14 includes a plurality of tabs 22 at each rail-engaging portion 20 of each bracket 18, including an upper locking tab 28a and a lower locking tab 28b, each of which is configured to limit or substantially preclude shelf 14 from being inadvertently or accidentally dislodged or disconnected from secure engagement with support rails 12 (
As best shown in
The standard or non-locking tabs 28c are generally L-shaped with rearward-extending portions 30′ including neck regions 32′, and downward-extending portions 34′, but lack forward-projecting teeth (
In the illustrated embodiment, rail-engaging portion 20 has five total rear projections or tabs 22, the uppermost and lowermost of which are locking tabs 28a, 28b while the middle three are standard tabs 28c. However, it will be appreciated that a rail-engaging portion of a shelf or article support may include only a single locking tab, or substantially any number of tabs, any or all of which may be locking tabs. Thus, the locking tab or tabs may be positioned substantially anywhere among the tabs of the rail-engaging portion of an article support, without departing from the spirit and scope of the present invention.
When shelf 14 is attached or mounted at support rails 12, locking tabs 28a, 28b are inserted into respective slots 24 and shelf 14 is lowered slightly to receive and engage respective web portions 25 of support rail 12 into the channels 36 that are defined in part by the respective locking tabs. When arranged in this manner, the locking tabs' respective teeth 36 are disposed below the web portions 25 that define the lower ends of the slots 24 through which upper and lower locking tabs 28a, 28b extend (
The gap dimension of channel 48 of non-locking tabs 28c thus is slightly larger than the width of the web portions 25, while the gap dimension of the channels 38 formed between the teeth 36 and the rearward surface 46 of shelf bracket 18 is slightly greater than or generally equal to the width of the web portions 25, while being slightly less than the gap dimension of channels 48 of standard tabs 28c. Thus, teeth 36 of locking tabs 28a, 28b protrude into the lower slots (the slots below the respective slots through which the locking tabs are inserted) when the shelf is moved or urged or biased forwardly or away from the rails 12 (
Optionally, and such as can be seen in
In the illustrated embodiment, the shelf 14 is biased or urged away from the rails via a biasing element or elements 26 formed or established or disposed at or near a rear edge portions 16a of article supporting region 16 of shelf 14. In the illustrated embodiment, biasing elements 26 extend from a central or base portion 52 at the rear edge portions 16a of article-supporting region 16 and proximate the upper locking tab 28a (
Contact region or surface 54 at distal end portion 26b of leaf spring 26 contacts a wall or other mounting surface to which support rails 12 are attached, or may contact the support rail 12 such as at forward wall 12a. When tabs 22 are engaged with respective slots 24 of support rails 12, leaf springs 26 are biased forwardly relative to article-supporting region 16 of the shelf 14, and thus apply a biasing force to the shelf in a direction away from support rail 12 and/or the surface(s) to which the rail or rails are attached. This biasing force maintains the engagement of tooth 36 of upper locking tab 28a with the slot 24 in particular, so that removing shelf 14 from support rail 12 requires first pushing shelf 14 rearwardly toward support rail 12 (against the biasing force of leaf spring 26, such as referenced as “STEP 1” in
It will be appreciated that the biasing force of each leaf spring 26 may be adjusted according to the angle at which each leaf spring 26 extends rearwardly from central mounting portion 52, or by adjusting the shape and/or hardness and/or spring rate and/or the like of each spring. Optionally, another biasing element (such as a coil spring or additional leaf spring), could be placed between the rear edge portions 16a of article-supporting region 16 and each leaf spring 26. Optionally, and instead of leaf springs 26, it will be appreciated that substantially any biasing element, such as coil springs, resilient/compressible members or the like, may be positioned at a rear portion of shelf 14 or a forward portion of the support rail or support wall, for applying a biasing force between the shelf and the rail or wall to urge the shelf away from its respective support rail or rails or wall, when the shelf is supported at the rails, without departing from the spirit and scope of the present invention.
Thus, locking tabs 28a, 28b and leaf spring 26 cooperate to limit or substantially prevent inadvertent or accidental removal of shelf 14 from its support rails 12, since the sequential combination of forces needed to remove the shelf (i.e., inward/rearward, upward, and outward/forward forces applied in sequence) would generally occur only when an installer or user intends to remove or adjust the shelving. For example, if shelf 14 were accidentally bumped or moved upwardly, tooth 36 of lower locking tab 28b would more fully insert into its corresponding slot 24 and engage the lower surface of the web portion 25 at the upper end of the slot 24 (if not already so-engaged), so that both teeth 36 would resist any upward movement of the shelf, which is necessary to separate the shelf from the support rail. Similarly, an inadvertent bump or force in an inward direction (e.g., as in “STEP 1” of
It will be appreciated that the ability of locking tabs 28a, 28b to securely engage support rails 12 allows the slots 24 to be spaced more closely together than is common or typical in other shelving systems. For example, and with reference to
Shelf 14 may comprise any suitable material, such as a metallic material or steel or lightweight alloy or composite or substantially any material that is sufficiently strong and durable. For example, in the illustrated embodiment, shelf 14 may be unitarily formed from a single piece or sheet of planar sheet metal that is initially cut using any desired method (such as die-cut, laser-cut, etc.) to form a blank 56 (
Accordingly, a plurality of shelves 14 may be positioned along a pair of support rails 12 to form shelving system 10, such as in a retail display area, storage area, or the like (
Optionally, and as shown in
Therefore, the present invention provides a shelving system that is resistant to accidental or inadvertent separation of shelves from one or more vertical supports or support rails, and which is sufficiently strong and secure to permit the shelves to be adjusted along the support rails in relatively small intervals. Although the article support that is primarily shown and described herein comprises a shelf having a pair of brackets for attachment to a corresponding pair of elongate support rails, it is envisioned that the principles of the present invention may be practiced in connection with substantially any article support. For example, a support hook or hanger rod may incorporate a rail-engaging portion similar to the rail-engaging portion 20 of shelf 14, as described above. Moreover, substantially any article support may include a single rail-engaging portion for attaching the article support to a single vertical support or elongate support rail, or may include three or more rail-engaging portions for engaging three or more corresponding support rails, such as to increase the stability and/or load-bearing capacity of the article support.
In addition, it is envisioned that the elongate support rail or rails may be positioned in a non-vertical arrangement, such as in an angled or horizontal orientation, without departing from the spirit and scope of the present invention. Thus, it will be appreciated that the terms “upper”, “upward”, “lower”, “downward”, “rearward”, “forward”, etc., as used herein, are relative terms used for explaining directions as would generally be understood for use in connection with a conventionally-mounted horizontal shelf, and are not intended to be limiting in any way.
Changes and modifications to the specifically described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
This application is a continuation of U.S. application Ser. No. 13/298,677, filed Nov. 17, 2011 entitled SHELVING SYSTEM, the entire content of which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13298677 | Nov 2011 | US |
Child | 14697234 | US |