The present disclosure relates to cooling electric motors, particularly high-speed motors coupled to turbomachines.
The peak performance of an electric machine can be enhanced by effective cooling of windings of the stator. Heat is generated predominantly in the windings of the stator. Eddy currents in the rotor are high, but contribute very little to thermal losses, thus reducing the need for forced cooling. Often a liquid coolant is employed to extract heat from the stator. In conventional electric motors, the coolant may contact the rotor with little consequence. However, in very high speed motors, such as an electric motor coupled to a turbomachine, in which the speeds can approach 350,000 rpm, it is desirable to avoid oil contacting the rotor to avoid high losses due to a high shear rate of the coolant. A system and method to provide liquid coolant onto the windings of the stator, while avoiding coolant contact with the rotor, is sought.
In systems in which the coolant is a lubricant that is also provided to bearings associated with the electric motor or turbomachine, lubrication of the bearings should be maintained at all times during operation to maintain the system's integrity.
If the turbomachine associated with the electric motor operates at high temperature, another contributor to high temperatures in the electric machine is due to heat transfer, primarily radiation, from hot components of the turbomachine to the electric motor.
To overcome at least one problem in the prior art, an electronically-controlled turbocharger (ECT) is disclosed that includes: a turbocharger shaft onto which are mounted a turbine wheel and a compressor wheel and an electric machine disposed between the turbine wheel and the compressor wheel. The electric machine has a rotor coupled to the shaft, a stator concentrically arranged around the rotor, and a plurality of cores made up of a plurality of laminations with a plurality of coils wrapped around each plurality of laminations. An air gap is provided between the rotor and the stator. The electric machine includes a shield having at least a hollow cylindrical portion disposed in the air gap between the rotor and the stator. The cylindrical portion of the shield is comprised of a material having low electromagnet permeability. The shield may further include a first end cap affixed to a first end of the cylindrical portion and a second end cap affixed to a second end of the cylindrical portion. The cylindrical portion is disposed proximate the stator with the remaining air gap disposed between the cylindrical portion and the rotor. The cylindrical portion is thinner than the end caps. The end caps are affixed to the cylindrical portion via one of: friction welding, welding, soldering, gluing, threads, and snapping. At least a portion of surfaces of the end caps that face away from the cylindrical portion may be coated with an insulating material such as ceramic.
The ECT further includes a housing into which the electric machine is mounted with a pressurized coolant supply passage defined in the housing and an opening in an outer surface of the housing, a coolant manifold defined in the housing and fluidly coupled to the pressurized coolant supply passage, and a first coolant passage fluidly coupled to the coolant manifold and direct flow of coolant to the coils. The shield substantially prevents coolant from contacting the rotor. A drain is further defined in the housing. The shield substantially directing coolant toward the drain. In one embodiment, the end caps substantially form bell mouths.
A method to assemble an electric machine is disclosed that includes: assembling a stator, affixing a first end cap to a first end of a cylindrical sleeve, inserting the cylindrical sleeve with the stator, affixing a second end cap to a second end of the cylindrical sleeve, assembling a rotor, and inserting the rotor into the cylindrical sleeve. The method may further include coating a convex surface at least one of the end caps.
The end caps are affixed to the cylindrical sleeve by one of: welding, friction welding, gluing, threading, and snapping.
Also disclosed is a high-speed electric motor that includes a motor housing, a stator mounted in the motor housing, a rotor disposed within the stator with an air gap separating the stator and the rotor, first and second bearings disposed on first and second ends of the rotor (with the first and second bearing supported in the motor housing), and a liquid cooling apparatus. The liquid cooling apparatus includes: a pressurized coolant supply orifice defined in the motor housing and a plurality of coolant passages defined in the motor housing to direct flow to the stator; and a shield provided to substantially prevent coolant from contacting the rotor.
The shield is made up of a hollow cylindrical portion that is disposed in the air gap separating the stator and the rotor, a first end cap affixed to a first end of the cylindrical portion, and a second end cap affixed to a second end of the cylindrical portion. The end caps may be in the shape of bell mouths. The cylindrical portion is substantially thinner than the first and second end caps. The cylindrical portion of the shield is comprised of a material having low electromagnet permeability. The cylindrical portion is disposed proximate the stator with the remaining air gap disposed between the cylindrical portion and the rotor. The end caps are affixed to the cylindrical portion via one of: friction welding, welding, soldering, gluing, threading, and snapping. In some embodiments, at least a portion of surfaces of the end caps that face away from the cylindrical portion are coated with an insulating material. Throughout the disclosure the commonly-used term, electric motor, may be used to mean electric machine, i.e., a device that can be operated both as a motor and as a generator.
Advantages, according to embodiments of the disclosure, are that liquid cooling is provided to the stator, but the shield prevents coolant from getting to the rotor and the end caps of the shield introduce a heat transfer barrier from hotter components, such as an exhaust turbine, to the electric machine.
As those of ordinary skill in the art will understand, various features of the embodiments illustrated and described with reference to any one of the Figures may be combined with features illustrated in one or more other Figures to produce alternative embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. However, various combinations and modifications of the features consistent with the teachings of the present disclosure may be desired for particular applications or implementations. Those of ordinary skill in the art may recognize similar applications or implementations whether or not explicitly described or illustrated.
An internal combustion engine 10 having an electronically controlled turbocharger (ECT) 12, a type of turbomachine, is represented schematically in
Engine 10 has an oil pump 30 to lubricate and cool the engine as well as supplying oil to: electric motor 20 and bearings associated with ECT 12 and turbine shaft 16. Oil returning to engine 10 drains to sump 28 wherein it is picked up by oil pump 30 to be pressurized and provided to oil passages in engine 10 and ECT 12.
An electronic control unit 32 receives signals from various sensors 36 and receives signals from and provides signals to various actuators 34. ECU 32 also provides signals to actuators on engine 10 and a power electronics module 38 that provides current to electric motor 20 of ECT 20 and receives signals from sensors on engine 10 and ECT 20 and others. A single ECU 32 is shown; alternatively, distributed computing using a plurality of ECUs is used. For example, sensors 36 may include an oil pressure sensor within engine 10 and/or located at the inlet to ECT 20, a temperature sensor located proximate coils of the electric motor or at an outlet of ECT 20, as examples. Furthermore, based on models of the system, temperatures, pressures, and other parameters can be estimated based on a minimum set of sensor signals and actuator signals. For example, if temperature within the coils of the stator is sought, the flow of oil to the stator for cooling, the temperature of the oil to and from the stator, the current command to the electric machine, and a heat transfer model of the system can be employed to determine the temperature. The present description is one non-limiting example of how a particular temperature, pressure, or other condition can be determined based on a combination of sensor information, actuator information, and a model (or, alternatively, a lookup table).
A cross section of an ECT 40 is shown in
In the embodiment in
Pressurized lubricant, which is engine oil in one embodiment, is provided to ECT 40 through inlet 80. Oil from inlet 80 fills manifold 82. Manifold 82 is fluidly coupled to oil passages 84 and 86 with passage 84 providing lubricant to bearings 76 and 78 and passage 86 providing lubricant to bearing 78. A plug 85 is provided at the outside end of passage 84 to seal off the drilling to form passage 84.
Manifold 82 is also fluidly coupled to check valves 92, 94, and 96. When pressure in manifold 82 exceeds the opening pressure of the check valve, the check valve opens to allow flow through the check valve. The outlet side of valve 92 directs oil onto a first end 98 of windings of the electric machine; the outlet side of valve 94 directs oil to an oil gallery 100, and the outlet side of valve 96 directs oil onto a second end 102 of the windings. Gallery 100 is shown as a groove in a back iron 108 of the stator. Gallery 100 is contained between housing 72 and a groove in the back iron 108. Alternatively, a groove is provided in housing 72 with the outer surface of back iron 108 being without a groove.
Check valves 92, 94, and 96 ensure that when oil pressure provided to ECT 40 is lower than the opening pressure, that oil is not directed away from bearings 58, 76, and 78. That is, bearings 58, 76, and 78 receive priority lubrication. When pressure in manifold 82 is higher than the opening pressure, there is sufficient pressure in the system to provide cooling to the electric machine without negatively impacting the bearings. In the above discussion, the implication is that the opening pressure in each of check valves 92, 94, and 96 is the same. The opening pressures may be purposely set slightly different so that oil to the bearings is affected in a stepwise fashion. In another situation, the check valve opening pressures may be different due to manufacturing tolerances and effects that come into play during operation, such as deposits forming in the check valve or spring tension in the valves changing over time.
Oil provided to the various components travel to a collector 104 within the housing and drains through a drain hole 106. A shield 110 substantially prevents oil from accessing rotor 66. Shield 110 is provided circumferentially between rotor 66 and the stator (described in more detail below). In the view in
In
In
Turbine section 54 of ECT 40 is provided exhaust gases from an engine, thus consequently runs hot. Energy is dissipated in electric machine 200 (
The thickness of cylindrical sleeve 200 is selected to take up as little of the air gap as possible while having sufficient structural integrity. It can be seen in
Referring to
In
Assembly of shield is shown in a flowchart in
The coolant can be any suitable fluid. In the case of an ECT that is coupled to an internal combustion, engine lubricant is a fluid that is available under pressure to provide to the ECT for both cooling and lubricating purposes. In the embodiment in which lubricant serves as the coolant for the electric machine 20 (
As described above, lubrication of the bearings is prioritized over cooling the electric machine. For example, at startup, the oil pressure is likely less than that needed to provide oil both for cooling and lubrication and the check valves providing oil to the electric machine are closed. This may, in some situations, coincide with the desire to provide a high current to the electric machine to compress air in the turbomachine. The electric machine can tolerate a high burst of current for a short duration without overheating. However, without additional cooling measures being provided, the duration of such a burst is limited. A strategy to avoid overheating during such a situation in which the check valves are closed starts in block 300 in
The ability of the electric motor to provide torque is often limited by the current flux capacity as a result of the temperature that is generated in the coils or windings. Providing cooling to the windings effectively leads to a higher output motor. To that end, liquid cooling is known to be provided onto the windings. For high speed motors, however, the liquid cooling should be kept away from the rotor. The energy dissipated in the rotor is much lower than in the stator; thus, no liquid cooling is needed. In high speed motors, e.g., approaching 350,000 rpm in some ECTs, shearing of the coolant at such high speeds leads to a high frictional load as well as losses as the coolant is atomized into a mist. To keep the coolant from obtaining access to the rotor, a sleeve portion of a shield is placed between the rotor and the stator occupying a portion of the air gap. The shield has a cylindrical section and two bell mouth sections, one on each end. The cylindrical section, which is separated from the permanent magnets by a small air gap, is formed out of a material having low permeability so as to avoid undue interference with the flux lines set up in the motor. The permeability referred to herein relates to electromagnetic permeability. The material may be a polymer, composite, non-ferrous, or any other material with relatively low permeability. As the bell mouths are not within the air gap between the rotor and the stator, the bell mouths may be made of a material substantially without regard to the permeability.
A notch 146, as shown in
While the best mode has been described in detail with respect to particular embodiments, those familiar with the art will recognize various alternative designs and embodiments within the scope of the following claims. While various embodiments may have been described as providing advantages or being preferred over other embodiments with respect to one or more desired characteristics, as one skilled in the art is aware, one or more characteristics may be compromised to achieve desired system attributes, which depend on the specific application and implementation. These attributes include, but are not limited to: cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. The embodiments described herein that are characterized as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not outside the scope of the disclosure and may be desirable for particular applications.
The present application claims priority benefit from U.S. provisional patent application 61/692,727 filed 24 Aug. 2012.
Number | Date | Country | |
---|---|---|---|
61692727 | Aug 2012 | US |