1. Field of the Invention
The invention relates to a shield connector.
2. Description of the Related Art
U.S. Patent Application Publication No. 2012/0100753 discloses a shield connector with a wire-side terminal connected to an end of a wire. The wire-side terminal is accommodated in a housing that can be connected to a device-side connector in a device so that the wire-side terminal connects to a device-side terminal in the device-side connector. A shield shell covers the housing and has a lower opening. T the wire-side terminal is inserted through the lower opening of the shield shell and into the housing. A rubber plug seals the lower opening of the shield shell and is retained by a holder to prevent water from entering the shield shell.
Clearances are provided between the shield shell and the holder and between the holder and the wire to permit efficient assembly. Thus, the holder is assembled loosely with the wire and the shield shell. The loosely assembled holder will shake in a pull-out direction of the wire if the shield connector is used in an area subject to vibration, such as in a vehicle. This vibration is transmitted to the wire-side terminal and may cause trouble between the wire-side terminal and the device-side terminal.
The invention was completed based on the above situation and aims to avoid trouble between terminals due to vibration.
The invention is directed to a shield connector to be connected to a device-side connector provided on a device. The shield connector includes a housing and a terminal accommodated in the housing. The terminal is to be connected to a device-side terminal in the device-side connector. A wire is connected to the terminal and is pulled out of the housing. A shield shell covers the housing and is to be connected to a shield case of the device. A resin molded body is held in close contact with the outer peripheral surface of the wire and is sandwiched in a pull-out direction of the wire by a housing-side holding portion on the housing and a shell-side holding portion on the shield shell. This sandwiching of the resin molded body by the housing-side holding portion and the shell-side holding portion suppresses vibration of the wire in the pull-out direction caused by vibration of a vehicle or the like. The suppression of vibration of the wire in the housing prevents trouble between the terminal and the device-side terminal.
The housing may be formed with a wire pull-out hole from which the wire is pulled out from the interior of the housing and the housing-side holding portion may be an opening edge portion of the wire pull-out hole. Accordingly, the housing has a simple construction as compared with the case where the housing-side holding portion is provided separately on the inner side of the wire pull-out hole.
The resin molded body may fit into the wire pull-out hole. A housing-side seal ring may be mounted on the outer peripheral surface of the resin molded body for closely contacting the inner peripheral surface of the wire pull-out hole over the entire circumference. The housing-side seal ring provides sealing between the resin molded body and the inner peripheral surface of the wire pull-out hole and also functions as a shake suppressing portion for suppressing shaking of the resin molded body in the wire pull-out hole and for suppressing vibration of the wire in the pull-out direction due to the shaking of the resin molded body in the wire pull-out hole.
The shield shell may be formed to cover the resin molded body and the housing. A shell-side seal ring may be mounted on the outer peripheral surface of the resin molded body for closely contacting the outer peripheral surface of the resin molded body and the inner peripheral surface of the shield shell over the entire circumference. The shell-side seal ring provides sealing between the resin molded body and the shield shell and also functions as a shake suppressing portion for suppressing shaking of the resin molded body in the shield shell and suppressing vibration of the wire in the pull-out direction due to the shaking of the resin molded body in the shield shell.
The shield shell may be fixed to the shield case of the device by a bolt tightened in a direction intersecting with the pull-out direction of the wire. Thus, a fixing direction of the shield shell integral to the resin molded body intersects a vibration transmission direction for further suppressing vibration of the resin molded body.
A shield connector in accordance with an embodiment of the invention is identified by the numeral 10 in
The device is such that a device main body (not shown) is accommodated in the shield case 100 made of an electrically conductive material (left front side of the shield case 100 in
Left and right fastening holes 102 are formed on the shield case 110 above the mounting hole 101 as shown in
As shown in
As shown in
The inner conductive member 40 includes an electrically conductive stretchable conductor 41 formed to be stretchable at least in an axial direction, a female terminal 42 connected to one end of the stretchable conductor 41 and an L-shaped intermediate terminal 43 connected to the other end of the stretchable conductor 41.
The stretchable conductor 41 is a flexible conductor and, for example, a braided wire formed by braiding metal thin wires made of copper or copper alloy into a mesh is used as such. Note that it is possible to use metal thin wires of aluminum or aluminum alloy or another flexible metal besides those of a and the like. Further, besides braided wires, various flexible conductive members such as wire conductors (twisted wires, etc.) and copper foils can be used.
The female terminal 42 includes a terminal connecting portion 44 in the form of a rectangular tube to be connected to the device-side terminal 112 of the device-side connector 100 and a barrel portion 45 connected behind this terminal connecting portion 44 and to be crimped to the stretchable conductor 41. On the other hand, the intermediate terminal 43 is formed such that a round connecting portion 46 into which the fixing screw BT is to be inserted and a barrel portion 47 connected to the round connecting portion 46 and to be crimped and connected to the stretchable conductor 41 are substantially at a right angle to each other. Note that although the stretchable conductor 41 is crimped to the female terminal 42 and the intermediate terminal 43 in this embodiment, there is no limitation to this and the stretchable conductor 41 may be connected to the female terminal 42 and the intermediate terminal 43 by various known connection means such as brazing and soldering and welding.
As shown in
The housing main body 20 is made of synthetic resin, substantially L-shaped when viewed sideways and configured such that a fitting portion 21 fittable into the mounting hole 101 of the shield case 100 and a wire pull-out portion 22 from which two outer wires 50 are pulled out downward are coupled by a coupling portion 28 as shown in
A seal ring 23 is fit externally on the outer peripheral surface of the fitting portion 21 and seals between the inner peripheral surface of the mounting hole 101 and the outer peripheral surface of the fitting portion 21 as shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The cover 70 includes a seal ring 71 which comes into close contact with the inner peripheral surface of the operation hole 28A to seal the interior of the housing main body 20, and gives protection so that water or the like does not enter the housing main body 20 through the operation hole 28A when the cover 70 is mounted to cover the operation hole 28A after the bolts BT are tightened.
This shield shell 60 is made of an electrically conductive metal plate material such as iron and formed by assembling an upper shell 61 and a lower shell 62 with each other as shown in
As shown in
An auxiliary mounting piece 65 projecting rightward is provided on a right lower end part of the upper shell 61 as shown in
That is, the upper shell 61 is fixed to the shield case 100 in the vertical direction at an upper end part and fixed to the shield case 100 in forward and backward directions at a lower end part, thereby being fixed to the shield case 100 without being unstable in either direction.
As shown in
Further, an unillustrated braided wire is connected to the outer peripheral surface of the lower shell 62 and a protective member (not shown) such as a corrugated tube is mounted on the outer periphery of the lower shell 62, whereby the outer wires 50 pulled out downwardly from the wire pull-out hole 25 are collectively shielded and protected by the protective member.
As shown in
The resin molded body 80 is made of synthetic resin and is provided on the outer wires 50 pulled out down from the wire pull-out hole 25 of the wire pull-out portion 22 as shown in
As shown in
On the other hand, a shell-side holding portion 67 protruding inwardly over the entire circumference is formed on a lower opening edge portion of the lower shell 62. Thus, when the molded fitting portion 81 is fitted into the wire pull-out hole 25 and the lower shell 62 is mounted on the housing main body 20, the outer peripheral edge of the upper end surface 82A of the molded main body 82 is held in contact with the opening edge portion 25A of the wire pull-out hole 25 over the entire circumference and the outer peripheral edge of the lower end surface 82B of the molded main body 82 is held in contact with the shell-side holding portion 67 of the lower shell 62 over the entire circumference.
Specifically, when the resin molded body 80 is mounted into the wire pull-out portion 22 and the lower shell 62 is mounted on the housing main body 20, the molded main body 82 projecting radially outward of the molded fitting portion 81 over the entire circumference is vertically sandwiched by the opening edge portion 25A of the wire pull-out hole 25 and the shell-side holding portion 67 of the lower shell 62 as shown in
Further, since the opening edge portion 25A of the wire pull-out hole 25 is in contact with the upper end surface 82A of the molded main body 82, the complication of the structure of the housing main body 20 can be prevented as compared with the case where a housing-side holding portion is separately provided on the inner side of the wire pull-out hole.
Further, as shown in
The shell-side seal ring 83 radially projects from the shell-side seal ring mounting groove 85 over the entire circumference. When the lower shell 62 is mounted on the housing main body 20, the shell-side seal ring 83 is held in close contact with the inner peripheral surface of the lower shell 62 and the shell-side seal ring mounting groove 85. That is, sealing is provided between the lower shell 62 and the molded main body 82 by the shell-side seal ring 83, thereby being able to prevent water entering through the upper opening of the lower shell 62 from entering the protective member (not shown) mounted on the outer peripheral surface of the lower shell 62 and suppress the shaking of the molded main body 82 in the lower shell 62. Specifically, the shell-side seal ring 83 for sealing between the lower shell 62 and the molded main body 82 can be caused to function as a shake suppressing portion for suppressing the shaking of the resin molded body 80 in the lower shell 62. This can further suppress the vibration of the outer wires 50 in the housing main body 20 due to the shaking of the resin molded body 80 in the lower shell 62.
On the other hand, a housing-side seal ring mounting groove 86 into which an annular housing-side seal ring 84 is to be mounted is formed on the outer peripheral surface of the molded fitting portion 81 as shown in
The housing-side seal ring 84 radially projects from the housing-side seal ring mounting groove 86 over the entire circumference. When the molded fitting portion 81 is fitted into the wire pull-out hole 25, the housing-side seal ring 84 is held in close contact with the inner peripheral surface of the wire pull-out hole 25 and the housing-side seal ring mounting groove 86. That is, sealing is provided between the inner peripheral surface of the wire pull-out hole 25 and the molded fitting portion 81 by the housing-side seal ring 84, thereby being able to prevent water from entering the wire pull-out hole 25 and suppress the shaking of the molded fitting portion 81 in the wire pull-out hole 25. Specifically, the housing-side seal ring 84 for sealing between the molded fitting portion 81 and the inner peripheral surface of the wire pull-out hole 25 can be caused to function as a shake suppressing portion for suppressing the shaking of the resin molded body 80 in the wire pull-out hole 25. This can further suppress the vibration of the outer wires 50 in the housing main body 20 due to the shaking of the resin molded body 80 in the wire pull-out hole 25.
The shield connector 10 of this embodiment is configured as described above. Next, an example of a method for manufacturing the shield connector 10 is briefly described and then functions and effects of the shield connector 10 are described.
First, two outer wires 50 are inserted through the lower shell 62, and the LA terminal 52 is crimped to each outer wire 50. Subsequently, the two outer wires 50 are collectively molded, thereby forming the resin molded body 80 as shown in
Subsequently, the female terminals 42 are inserted into the cavities 31 of the front housing 30 mounted into the housing main body 20 from behind. When being inserted to proper positions of the cavities 31, the female terminals 42 are held and retained in the front housing 30. Further, the round connecting portions 46 of the intermediate terminals 43 are placed on the rear surfaces of the terminal fixing portions 26 of the housing main body 20.
Subsequently, the molded fitting portion 81 of the resin molded body 80 is inserted into the wire pull-out hole 25 of the wire pull-out portion 22 and fitted until the upper end surface 82A of the molded main body 82 comes into contact with the opening edge portion 25A of the wire pull-out hole 25. Further, when the molded fitting portion 81 is fitted into the wire pull-out hole 25, the housing-side seal ring 84 is held is close contact with the inner peripheral surface of the wire pull-out hole 25 and the housing-side seal ring mounting groove 86, thereby preventing water from entering the wire pull-out portion 22 and suppressing the shaking of the molded fitting portion 81 in the wire pull-out hole 25.
Subsequently, the round connecting portions 53 of the LA terminals 52 are placed on the rear surfaces of the round connecting portions 46 of the intermediate terminals 43 placed on the terminal fixing portions 26 of the coupling portion 28, and the bolts BT inserted through the operation hole 28A are inserted through the respective round connecting portions 46, 53 of the intermediate terminals 43 and the LA terminals 52 and tightened into the fixing nuts 27 of the terminal fixing portions 26 by the tool inserted through the operation hole 28A. In this way, as shown in
Subsequently, the lower shell 62 having the outer wires 50 inserted therethrough in advance is fitted and mounted onto the wire pull-out portion 22 and the resin molded body 80 from below. Then, the shell-side seal ring 83 is held in close contact with the inner peripheral surface of the lower shell 62 and the shell-side mounting groove 85. This prevents water having entered through the upper opening of the lower shell 62 from entering the protective member (not shown) mounted on the outer peripheral surface of the lower shell 62 and suppresses the shaking of the molded fitting portion 81 in the lower shell 62. Further, at this time, the shell-side holding portion 67 of the lower shell 62 comes into contact with the lower end surface 82B of the molded main body 82 of the resin molded body 80 and the molded main body 82 is vertically sandwiched by the opening edge portion 25A of the wire pull-out hole 25 and the shell-side holding portion 67 of the lower shell 62. In this way, the shaking of the resin molded body 80 in the vertical direction (pull-out direction of the outer wires 50) is restricted.
Finally, the bolt BT is inserted through the both bolt insertion holes 61A, 68A of the upper shell 61 and the lower shell 62 and the upper shell 62 and the lower shell 62 are fastened together by the bolt BT, whereby the shield shell 60 in which the upper shell 61 and the lower shell 62 are assembled and united is formed and the housing main body 20 is covered by this shield shell 60.
As described above, according to this embodiment, the resin molded body 80 collectively molding the outer wires 50 is vertically sandwiched by the opening edge portion 25A of the wire pull-out hole 25 and the shell-side holding portion 67 of the lower shell 62 as shown in
Further, according to this embodiment, the housing seal ring 84 for sealing between the resin molded body 80 and the inner peripheral surface of the wire pull-out hole 25 doubles as the shake suppressing portion for suppressing the shaking of the resin molded body 80 in the wire pull-out hole 25 and the shell-side seal ring 83 for sealing between the resin molded body 80 and the lower shell 62 doubles as the shake suppressing portion for suppressing the shaking of the resin molded body 80 in the lower shell 62. Thus, the shaking of the resin molded body 80 in the wire pull-out hole 25 and the lower shell 62 can be suppressed without increasing the number of components. Consequently, the vibration of the outer wires 50 in the housing main body 20 can be further suppressed.
Further, according to this embodiment, even if all vibrations cannot be suppressed at the position of the resin molded body 80, the vibrations are blocked by the terminal fixing portions 26 and absorbed by the stretchable conductors 41 since the LA terminals 52 are fixed to the terminal fixing portions 26 and the inner conductive members 40 include the stretchable conductors 41, wherefore the occurrence of a trouble between the female terminals 42 and the device-side terminals 112 can be reliably prevented.
Furthermore, since a fixing direction (forward and backward directions) in which the auxiliary mounting piece 65 of the upper shell 61 integrally fixed to the housing main body 20 is fixed to the shield connector 100 is substantially perpendicular to a direction (vertical direction) in which the vibration is transmitted in the outer wires 50, the vibration can be further suppressed at the position where the auxiliary mounting piece 65 of the upper shell 61 is fixed to the shield connector 100.
The present invention is not limited to the above described and illustrated embodiment. For example, the following embodiments are also included in the technical scope of the present invention.
Although the shield connector 10 including the stretchable conductors 41 is illustrated in the above embodiment, the present invention is not limited to such a mode and can be, for example, applied to a shield connector including no stretchable conductor.
Although the two outer wires 50 are molded by the resin molded body 80 in the above embodiment, the present invention is not limited to such a mode. For example, the resin molded body may be formed by molding one, three or more outer wires.
Although the auxiliary mounting piece 65 is formed only on the right side of the upper shell 61 in the above embodiment, the present invention is not limited to such a mode. For example, auxiliary mounting pieces may be formed on both left and right sides of the upper shell.
Although the auxiliary mounting piece 65 is provided on the upper shell 61 in the above embodiment, the present invention is not limited to such a mode. For example, the auxiliary mounting piece may be formed on the lower shell.
Although the opening edge portion 25A of the wire pull-out hole 25 is brought into contact with the upper surface of the molded main body 82 in the above embodiment, the present invention is not limited to such a mode. For example, a housing holding portion capable of coming into contact with the upper surface of the resin molded body may be formed on the inner side of the wire pull-out hole.
Number | Date | Country | Kind |
---|---|---|---|
2012-235746 | Oct 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7544068 | Glaab, III | Jun 2009 | B2 |
20090137153 | Yoshioka et al. | May 2009 | A1 |
20120094537 | Aoki et al. | Apr 2012 | A1 |
20120100753 | Omae et al. | Apr 2012 | A1 |
20130065426 | Yamashita et al. | Mar 2013 | A1 |
20130316573 | Uno et al. | Nov 2013 | A1 |
20140004740 | Uno | Jan 2014 | A1 |
20140120763 | Itsuki | May 2014 | A1 |
20140287631 | Tashiro | Sep 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20140120767 A1 | May 2014 | US |