The disclosed embodiments relate to mobile computing devices that are enabled to receive inductive signals. In particular, the disclosed embodiments relate to a shield for use with a computing device that receives an inductive signal transmission.
It is well established in magnetic induction that a changing magnetic flux density in the presence of an electrical conductor can be exploited to cause an electric current. Static magnets, such as bar magnets, do not induce such electrical currents, as such magnets do not have magnetic fields that are time-varying. A common implementation of induced current in time-varying magnetic fields is a transformer. In typical transformer design, an alternating (AC or time changing) electric current in one winding will induce a time changing magnetic field in the iron core. This in turn induces a different current in the output winding.
Embodiments described herein include a computing device that is capable of receiving or transmitting inductive signals to a compatible device. The computing device includes an inductive shield that protects external devices and/or components of the device from magnetically induced unwanted electrical effects.
Embodiments described herein provide an inductive shield for use in protecting a computing device that is inductively coupled to another computing device. In particular, embodiments described herein provide an inductive shield to protect circuit or electronic elements of a device, receiving an inductively transmitted signal from another device, from the magnetic field of the device that inductively transmits the signal.
As used herein, a materials is considered to have of high magnetic permeability if its permeability is several hundred times (e.g. 300) that of air. As described herein, such materials may be used as low magnetic reluctance flux path guides, provided such materials have low electrical conductivity. As an alternative, candidate flux path materials which have high permeability, but also exhibit high electrical conductivity may be used as low reluctance magnetic flux path guides, provided that efforts are made to limit induced eddy currents. In particular, such high conductive/high permeability materials may be structurally configured to act as relatively low reluctance magnetic flux guides through, for example, the formation of slots or holes in the material, reducing the thickness of the material, or through use of multilayer lamination techniques.
Numerous embodiments described herein apply between any two devices that are inductively coupled and which carry circuit or electronic elements. In some embodiments, the two devices correspond to a mobile computing device and a docking station (or dock). However, other configurations and devices may be configured in accordance with embodiments described herein.
Some embodiments described herein may generally require the use of computers, including processing and memory resources. For example, systems described herein may be implemented on a server or network service. Such servers may connect and be used by users over networks such as the Internet, or by a combination of networks, such as cellular networks and the Internet. Alternatively, one or more embodiments described herein may be implemented locally, in whole or in part, on computing machines such as desktops, cellular phones, personal digital assistances or laptop computers. Thus, memory, processing and network resources may all be used in connection with the establishment, use or performance of any embodiment described herein (including with the performance of any method or with the implementation of any system).
Furthermore, some embodiments described herein may be implemented through the use of instructions that are executable by one or more processors. These instructions may be carried on a computer-readable medium. Machines shown in figures below provide examples of processing resources and computer-readable mediums on which instructions for implementing embodiments of the invention can be carried and/or executed. In particular, the numerous machines shown with embodiments of the invention include processor(s) and various forms of memory for holding data and instructions. Examples of computer-readable mediums include permanent memory storage devices, such as hard drives on personal computers or servers. Other examples of computer storage mediums include portable storage units, such as CD or DVD units, flash memory (such as carried on many cell phones and personal digital assistants (PDAs)), and magnetic memory. Computers, terminals, network enabled devices (e.g. mobile devices such as cell phones) are all examples of machines and devices that utilize processors, memory, and instructions stored on computer-readable mediums.
Overview
Accordingly, a system 100 includes a MCD 110 that is supported or otherwise retained by a dock 120. The manner in which the MCD 110 is supported may vary. Moreover, as described with one or more embodiments, the orientation of the MCD on the dock may be changed by the user for purpose of configuring operations or behavior of one or both devices. According to an orientation of an embodiment shown, the MCD 110 is supported on the dock 120 in a partially upright position along its length axis (L). Such an orientation may correspond to a ‘portrait’ position. In an embodiment in which alternative orientations are possible, the ‘landscape’ positions, or positions in between the portrait and landscape positions may be possible.
According to an embodiment, the dock 120 utilizes physical support structures (not shown), such as shelves, platforms, hooks or mechanical retention features, to retain the MCD 110 in a docked or mated position. In another embodiment, magnetic clasps may be included or provided the dock 120 and/or the MCD 110 to secure retention of the MCD against the dock.
The MCD 110 and dock 120 of system 100 are inductively enabled to enable one or both devices to inductively transmit power or data to the other device. Each device may include inductive resources to enable transmission and/or receipt of inductive signals. In particular, MCD includes a component set 105 to receive inductive signals from the dock 120. Likewise, the dock 120 may include resources 121 for inductively transmitting power and/or data signals to the MCD 110. For example, the dock 120 may be mated with a power outlet or another computer (e.g. desktop computer) to extend power and/or data signals. The resources 121 may include circuitry or hardware, such as AC/DC converters and regulators. In order to enable the dock 120 to receive electrical power from a personal computer or other computing station, one implementation provides for the dock 120 to include a physical connector port, such as provided by a Universal Serial Bus (USB) connector. Additionally, the dock 120 may include data acquisition capabilities, provided through connector ports with the computer, wireless ports (e.g. cellular, WiMax connection, Bluetooth), Internet ports, and media feeds (e.g. provided through television tuner and cable).
As shown by an embodiment of
As described with numerous embodiments, the component set 105 of the MCD 110 includes an inductive shield 115 that protects the other elements of the MCD from the magnetic field generated by the dock 120 in making the inductive signal. In particular, a magnetic field generated from the dock 120 may cause eddy or side currents in the electrical elements of the MCD. To address such cross-electrical currents, one or more embodiments provide for use of the inductive shield 115 to preclude or inhibit the magnetic field of the MCD 110 from reaching or affecting other components of the MCD 110 (including components that are not used for inductively signaling with the dock 120).
Embodiments described herein recognize that the presence of magnetic fields may induce currents or other undesirable electrical affects in circuits/components other than the coils 220. Such electrical affects can damage the circuits or electrical elements, reduce their lifespan, or interfere with other operations of the device. Accordingly, embodiments provide for use of an inductive shield 230 that protects the circuits 211 and/or components 213 from unwanted magnetic disruptions. In some embodiments, the circuits 211 and components 213 correspond to radio frequency receivers and transmitters, which suffer considerable performance loss in presence of inductively induced noise. Still further, the inductive shield improves efficiency of an inductive energy transfer system.
In some embodiments, the inductive shield 230 is comprised of multiple layers of materials, including insulators (heat or electrical) and/or materials with high magnetic permeability. The individual layers of the inductive shield 230 may also include varying geometries (disc shape, donut shape, rectangular, T-shaped (or 3-leaved), cross-shaped (or 4-leaved) etc.) The individual layers of the inductive shield may also include different three dimensional contours. For example, some embodiments provide for material with high magnetic permeability (Hi MU) that is shaped to extend lengths in three dimensions (X, Y, Z).
As one variation and with reference to an embodiment of
An another example, with reference to
Materials such as depicted in
With further reference to an embodiment of
As an alternative to forming the opening 670, an alternative variation incorporates a magnet in place of the opening. The use of a magnet in place of the opening 670 similarly serves to center or make more symmetric, the respective portions of the magnetic field 650, 652.
With regard to embodiments of
Exterior Considerations
Embodiments described herein recognize that the presence of metal on an exterior surface of a device may cause unwanted electrical effects when the device is inductively coupled to another device. In the context of, for example, mobile computing devices, it is often desirable from an industrial design perspective to have metal logos or writing on the device. However since metal is conductive it can take power away from the inductive charging circuits.
Another technique to overcome power loss from the presence of metal on an exterior surface is (including metal letters and logos) is to form such metal decor using vacuum metallization techniques. Such techniques deposit very thin layers of metal, which diminishes the conductance per length of the metal. In turn, this reduces the amount of loss the metal writing can affect upon a circuit that is to be powered through inductive signal transfer.
Furthermore, with use of non-conductive vacuumized metal (NCVM), the logo can be made to be very attractive while having minimal effects on charging circuits.
Still further, the letters of the logo may be strategically positioned. More specifically, the individual letters or groups of letters may be positioned apart from a magnetic pole of a charging circuits, but rather positioned between the pole to pole pairings. This minimizes the direct flux passage through the letters and hence the amount of induced current.
It is contemplated for embodiments described herein to extend to individual elements and concepts described herein, independently of other concepts, ideas or system, as well as for embodiments to include combinations of elements recited anywhere in this application. Although illustrative embodiments of the invention have been described in detail herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments. As such, many modifications and variations will be apparent to practitioners skilled in this art. Accordingly, it is intended that the scope of the invention be defined by the following claims and their equivalents. Furthermore, it is contemplated that a particular feature described either individually or as part of an embodiment can be combined with other individually described features, or parts of other embodiments, even if the other features and embodiments make no mentioned of the particular feature. This, the absence of describing combinations should not preclude the inventor from claiming rights to such combinations.
This application claims benefit of priority to U.S. Provisional Application No. 61/142,195, filed Jan. 1, 2009, entitled TECHNIQUES FOR MAGNETICALLY COUPLING CHARGING CIRCUITS AND DEVICES; the aforementioned priority application being hereby incorporated by reference in its entirety. This application is a continuation-in-part of U.S. patent application Ser. No. 12/239,656, filed Sep. 26, 2008, entitled ORIENTATION AND PRESENCE DETECTION FOR USE IN CONFIGURING OPERATIONS OF COMPUTING DEVICES IN DOCKED ENVIRONMENTS; the aforementioned application being hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5375226 | Sano et al. | Dec 1994 | A |
5455466 | Parks et al. | Oct 1995 | A |
5596567 | de Muro et al. | Jan 1997 | A |
5600225 | Goto | Feb 1997 | A |
5666530 | Clark et al. | Sep 1997 | A |
5733313 | Barreras et al. | Mar 1998 | A |
5760580 | Tyren | Jun 1998 | A |
5831348 | Nishizawa | Nov 1998 | A |
5958051 | Renaud et al. | Sep 1999 | A |
6006274 | Hawkins et al. | Dec 1999 | A |
6091965 | Voroba et al. | Jul 2000 | A |
6138245 | Son et al. | Oct 2000 | A |
6184651 | Fernandez et al. | Feb 2001 | B1 |
6266539 | Pardo | Jul 2001 | B1 |
6330436 | Zidel | Dec 2001 | B1 |
6389423 | Sakakura | May 2002 | B1 |
6405049 | Herrod et al. | Jun 2002 | B2 |
6436299 | Baarman et al. | Aug 2002 | B1 |
6445936 | Cannon et al. | Sep 2002 | B1 |
6501364 | Hui et al. | Dec 2002 | B1 |
6510424 | Ford et al. | Jan 2003 | B1 |
6532152 | White et al. | Mar 2003 | B1 |
6671700 | Creemer et al. | Dec 2003 | B1 |
6673250 | Kuennen et al. | Jan 2004 | B2 |
6731071 | Baarman | May 2004 | B2 |
6795110 | Kossin | Sep 2004 | B1 |
6803744 | Sabo | Oct 2004 | B1 |
6806649 | Mollema et al. | Oct 2004 | B2 |
6810405 | LaRue et al. | Oct 2004 | B1 |
6812645 | Baarman | Nov 2004 | B2 |
6825620 | Kuennen et al. | Nov 2004 | B2 |
6831417 | Baarman | Dec 2004 | B2 |
6850986 | Peacock | Feb 2005 | B1 |
6888438 | Hui et al. | May 2005 | B2 |
6917163 | Baarman | Jul 2005 | B2 |
6975198 | Baarman et al. | Dec 2005 | B2 |
6986051 | Le Pennec et al. | Jan 2006 | B2 |
7065658 | Baraban et al. | Jun 2006 | B1 |
7116200 | Baarman et al. | Oct 2006 | B2 |
7118240 | Baarman et al. | Oct 2006 | B2 |
7126450 | Baarman et al. | Oct 2006 | B2 |
7132918 | Baarman et al. | Nov 2006 | B2 |
7149473 | Lindlar et al. | Dec 2006 | B1 |
7164255 | Hui | Jan 2007 | B2 |
7248017 | Cheng et al. | Jul 2007 | B2 |
7262700 | Hsu | Aug 2007 | B2 |
7271569 | Oglesbee | Sep 2007 | B2 |
7286880 | Olson et al. | Oct 2007 | B2 |
7331793 | Hernandez et al. | Feb 2008 | B2 |
7375492 | Calhoon et al. | May 2008 | B2 |
7382636 | Baarman et al. | Jun 2008 | B2 |
7385357 | Kuennen et al. | Jun 2008 | B2 |
7392059 | White et al. | Jun 2008 | B2 |
7414380 | Tang et al. | Aug 2008 | B2 |
7446672 | Johnson et al. | Nov 2008 | B2 |
7454170 | Goossens et al. | Nov 2008 | B2 |
7462951 | Baarman | Dec 2008 | B1 |
7471986 | Hatlestad | Dec 2008 | B2 |
7495414 | Hui | Feb 2009 | B2 |
7509432 | Peacock | Mar 2009 | B1 |
7521890 | Lee et al. | Apr 2009 | B2 |
7576514 | Hui | Aug 2009 | B2 |
7589285 | Matsumoto et al. | Sep 2009 | B2 |
7743151 | Vallapureddy et al. | Jun 2010 | B2 |
20020084698 | Kelly et al. | Jul 2002 | A1 |
20020103008 | Rahn et al. | Aug 2002 | A1 |
20030214255 | Baarman et al. | Nov 2003 | A1 |
20030233455 | Leber et al. | Dec 2003 | A1 |
20040088012 | Kroll et al. | May 2004 | A1 |
20040130915 | Baarman | Jul 2004 | A1 |
20040130916 | Baarman | Jul 2004 | A1 |
20040150934 | Baarman | Aug 2004 | A1 |
20040222751 | Mollema et al. | Nov 2004 | A1 |
20040232845 | Baarman et al. | Nov 2004 | A1 |
20040259499 | Oba et al. | Dec 2004 | A1 |
20050007067 | Baarman et al. | Jan 2005 | A1 |
20050093475 | Kuennen et al. | May 2005 | A1 |
20050116650 | Baarman | Jun 2005 | A1 |
20050122058 | Baarman et al. | Jun 2005 | A1 |
20050122059 | Baarman et al. | Jun 2005 | A1 |
20050127849 | Baarman et al. | Jun 2005 | A1 |
20050127850 | Baarman et al. | Jun 2005 | A1 |
20060041420 | Martin et al. | Feb 2006 | A1 |
20060061958 | Solomon et al. | Mar 2006 | A1 |
20060123055 | Atkinson et al. | Jun 2006 | A1 |
20060132045 | Baarman | Jun 2006 | A1 |
20070035917 | Hotelling et al. | Feb 2007 | A1 |
20070064406 | Beart | Mar 2007 | A1 |
20070120752 | Takasu | May 2007 | A1 |
20070182367 | Partovi | Aug 2007 | A1 |
20070188284 | Dobbs | Aug 2007 | A1 |
20070246546 | Yoshida | Oct 2007 | A1 |
20070290654 | Govari et al. | Dec 2007 | A1 |
20080133918 | You et al. | Jun 2008 | A1 |
20080196086 | Shintani et al. | Aug 2008 | A1 |
20080231537 | Rofougaran et al. | Sep 2008 | A1 |
20080278894 | Chen et al. | Nov 2008 | A1 |
20090001932 | Kamijo et al. | Jan 2009 | A1 |
20090001941 | Hsu et al. | Jan 2009 | A1 |
20090008148 | Mashino | Jan 2009 | A1 |
20090069869 | Stouffer et al. | Mar 2009 | A1 |
20090088077 | Brown et al. | Apr 2009 | A1 |
20090106567 | Baarman | Apr 2009 | A1 |
20090170433 | Rhodes et al. | Jul 2009 | A1 |
20090212637 | Baarman et al. | Aug 2009 | A1 |
20090212737 | Johnson et al. | Aug 2009 | A1 |
20100007449 | Tait et al. | Jan 2010 | A1 |
20100021176 | Holcombe et al. | Jan 2010 | A1 |
20100045269 | LaFranchise et al. | Feb 2010 | A1 |
20100070219 | Azancot et al. | Mar 2010 | A1 |
20100076524 | Forsberg et al. | Mar 2010 | A1 |
20100081377 | Corbridge et al. | Apr 2010 | A1 |
20100081473 | Chatterjee et al. | Apr 2010 | A1 |
20100083012 | Corbridge et al. | Apr 2010 | A1 |
20100121965 | Chatterjee | May 2010 | A1 |
20100131691 | Chatterjee et al. | May 2010 | A1 |
20100146308 | Gioscia et al. | Jun 2010 | A1 |
20100156193 | Rhodes et al. | Jun 2010 | A1 |
20100172090 | Chatterjee | Jul 2010 | A1 |
20100177476 | Hotelling et al. | Jul 2010 | A1 |
20100194336 | Azancot et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
1592197 | Mar 2005 | CN |
395469 | Oct 1990 | EP |
2601161 | Jan 1988 | FR |
2389720 | Sep 2005 | GB |
2399466 | Nov 2005 | GB |
2389767 | Apr 2006 | GB |
09-259241 | Oct 1997 | JP |
11-354348 | Dec 1999 | JP |
3161388 | Feb 2001 | JP |
10-0836634 | Jun 2008 | KR |
WO 9503686 | Feb 1995 | WO |
WO 2004098079 | Nov 2004 | WO |
WO 2005024865 | Mar 2005 | WO |
WO 2008033670 | Mar 2008 | WO |
WO 2008044875 | Apr 2008 | WO |
WO 2008133806 | Nov 2008 | WO |
WO 2009057771 | May 2009 | WO |
WO 2010005324 | Jan 2010 | WO |
WO 2010062198 | Jun 2010 | WO |
WO 2010068062 | Jun 2010 | WO |
WO 2010068062 | Jul 2010 | WO |
WO 2010091269 | Aug 2010 | WO |
Entry |
---|
U.S. Appl. No. 11/430,786, filed May 8, 2006, Baraban et al. |
U.S. Appl. No. 29/323,688, filed Aug. 28, 2008, Matsuoka. |
Final Office Action mailed Jul. 9, 2007 in U.S. Appl. No. 11/430,786. |
Final Office Action mailed Jul. 19, 2010 in U.S. Appl. No. 11/430,786. |
Final Office Action mailed Oct. 25, 2004 in U.S. Appl. No. 09/861,658, 10 pgs. |
Final Office Action mailed Dec. 30, 2009 in U.S. Appl. No. 11/430,786. |
Final Office Action mailed Jan. 8, 2009 in U.S. Appl. No. 11/430,786. |
Hui et al., “A New Generation of Universal Contactless Battery Charging Platform for Portable Consumer Electronic Equipment,” IEEE Trans Power Electronics, 20(3):620-627 (2005). |
International Search Report and Writen Opinion dated Aug. 31, 2010 in International Application No. PCT/US2010/020054. |
Kean, Steven, “Powermat Portable Wireless Charging Mat”, pp. 1-12 dwnloaded from http://www.bigbruin.com/content/powermat—1 on Sep. 29, 2010. |
Liang et al., “An implantable bi-directional wireless transmission system for transcutaneous biological signal recording,” Physiol. Meas. 26:83-97 (2005). |
Mel B. W. et al., “Tablet: Personal Computer in the Year 2000”, Communications of the Association for Computing machinery, New Your, NY vol. 31, No. 6, Jun. 1, 1988, 639-646 XP000047633ISSN: 0001-0782. |
Non-Final Office Action mailed Mar. 24, 2010 in U.S. Appl. No. 11/430,786. |
Non-Final Office Action mailed Jun. 11, 2009 in U.S. Appl. No. 11/430,786. |
Non-Final Office Action mailed Jan. 25, 2008 in U.S. Appl. No. 11/430,786. |
Non-Final Office Action mailed Sep. 30, 2010 in U.S. Appl. No. 11/430,786, 7 pgs. |
Non-Final Office Action mailed Oct. 5, 2006 in U.S. Appl. No. 11/430,786. |
Non-Final Office Action mailed Apr. 22, 2004 in U.S. Appl. No. 09/861,658, 7 pgs. |
Non-Final Office Action mailed Apr. 7, 2005 in U.S. Appl. No. 09/861,658, 11 pgs. |
Non-Final Office Action mailed Jul. 25, 2008 in U.S. Appl. No. 11/430,786. |
Notice of Allowance mailed Jan. 9, 2006 in U.S. Appl. No. 09/861,658, 12 pgs. |
Opticon Users manual DWT 7133, Nov. 2000. |
U.S. Appl. No. 12/916,388, filed Oct. 29, 2010, Chatterjee et al. |
U.S. Appl. No. 12/975,335, filed Dec. 21, 2010, Oh et al. |
U.S. Appl. No. 12/987,940, filed Jan. 10, 2011, Chatterjee et al. |
Non-Final Office Action mailed Nov. 3, 2010 in U.S. Appl. No. 12/478,616, 12 pgs. |
U.S. Appl. No. 12/628,401, filed Dec. 1, 2009, Chatterjee. |
U.S. Appl. No. 12/840,241, filed Jul. 20, 2010, Chatterjee. |
U.S. Appl. No. 12/841,001, filed Jul. 21, 2010, Chatterjee. |
U.S. Appl. No. 29/323,686, filed Aug. 28, 2008, Matsuoka et al. |
International Search Report and WRitten Opinion dated Aug. 20, 2010 in International Application No. PCT/US2009/069847. |
International Search Report and Written Opinion dated Jul. 28, 2010 in International Application No. PCT/US2009/068332. |
International Search Report and Written Opinion dated Jul. 21, 2010 in International Application No. PCT/US2009/068328. |
International Search Report and Written Opinion dated Apr. 20, 2010 in International Application No. PCT/US2009/055928. |
Number | Date | Country | |
---|---|---|---|
20100081483 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
61142195 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12239656 | Sep 2008 | US |
Child | 12455802 | US |