The present invention relates to a shield system.
Cross winds combined with certain temperatures are known to lower fan performance and have a detrimental impact on the efficiency of air coolers (AC). This type of apparatus is used in various industries, including petrochemical and process industries, and can include air cooled condensers (ACC) used in power stations. The jetting of air as it passes under the air cooler windwall creates a Venturi effect, often causing the air column in the fans to stall. This problem is more prevalent with the prevailing wind and can be exacerbated by surrounding buildings, trees, tall hedges, etc.
Some shield systems, including those used in connection with ACs, utilise a roller-blind type mechanism to adjust the position of the sheet. Various types of mechanisms for holding the shield at a desired position are known, but these are often mechanically unreliable for sheets of a larger size and/or can be difficult to use.
Embodiments of the present invention are intended to address at least some of the abovementioned problems.
According to a first aspect of the present invention there is provided a shield system adapted for use in an air cooler structure, the shield system including:
at least one flexible sheet;
at least one arrangement for fixing, in use, the at least one flexible sheet to an air cooler structure.
The at least one fixing device may include a plurality of fixing members that are attached at intervals to the structure. At least part of the fixing member may extend outwardly from part of the structure. Typically, a pair of corresponding fixing members will be attached at each interval, a first one of the pair at an upper location of the structure and a second one at a lower location. Each of the fixing members may include at least one mounting for at least one elongate member. The system may further include at least one elongate member, in use, the elongate member extending in a generally vertical direction between the mountings of a said pair of vertically-spaced fixing members. In some embodiments, each of the fixing members may include first and second mountings so that, in use, a first elongate member may extend between a first set of the upper and the lower mountings of a pair of said fixing members, and a second elongate member may extend between a second set of the upper and lower mountings. The at least one flexible sheet may be positioned between the first and the second elongate members, such that the first and the second elongate members limit movement of the flexible sheet (typically in a generally horizontal plane).
The system may further include a driving device for adjusting a position of the at least one flexible sheet. The driving device may comprise an electrical motor. The driving device may be mounted on a part of the structure. The driving device may travel along with a portion of the at least one sheet in use. The driving device may be mounted on an arrangement, e.g. a track, connected to part of the structure. The driving device may be connected to an elongate member running along at least part of a width of the at least one sheet. The driving device may wind the at least one sheet on/off of the elongate member in use.
In use, the at least one sheet may extend between a pair of vertical struts of the structure. The system may further include at least one further sheet that, in use, extends between any gaps (e.g. where the driving device is located) between the first-mentioned sheets, and/or at or adjacent an of one of the first-mentioned sheets. The at least one further sheet may be connected to the fixing members.
In some embodiments, the fixing members may be located such that the at least one sheet, when fitted to a pair of the fixing members may extend at least partially across an input air path of a fan of the air cooler structure. In this case, each of the fixing members may be elongate members that are fitted to a part of the structure either side of the air path and each of the elongate members may be curved or angled in a direction similar to that of the air path. In use, when the at least one sheet is fitted to extend between the pair of fixing members, the sheet may guide external wind along the air path towards the fan. In some embodiments there are two of the pairs of fixing members, fitted at spaced apart locations to the structure, such that the sheets extending between each pair form a conduit for external wind to flow towards the fan, which can boost performance of the fan. The fixing members may provide a rack for allowing a driving device to adjust the position of the at least one sheet.
The air cooler structure will normally be one that is at least partially exposed to environment.
The driving device may be connected to, or may include, a controller, which may have manual controls. Alternatively or additionally, the controller may receive control signals from a weather condition-monitoring device. The weather condition-monitoring device may monitor wind speed, wind direction, AC key indicators and/or temperature. The controller may be configured to position the at least one sheet in a fully-open configuration if the wind speed is within a first range. The controller may be configured to position the at least one sheet in a partially-open configuration if the wind speed is within a second range. The controller may be configured to position the at least one sheet in a fully-closed configuration if the wind speed is within a third range. The weather condition-monitoring device may also monitor temperature and/or air pressure and/or precipitation and the controller may be configured to use at least one of these readings when determining how to position the at least one sheet.
In an alternative embodiment, the at least one sheet may be provided in a Venetian blind type configuration.
The at least one fixing arrangement may include at least one clamp or the like.
The flexible sheet may comprise a mesh or a solid sheet. The mesh may be between around 5% and 50% permeable/open gauge materials. Examples of suitable mesh materials include PVC coated polyester. The flexible sheet may be coated with, or formed of, a (preferably non-toxic) material that provides rot-proof qualities, tear resistance and/or UV stability.
The system may include a catch mechanism substantially as described herein for releasably fixing a position of the at least one sheet.
According to another aspect of the present invention there is provided a method of controlling a position of a shield, which may be fitted to an AC structure, the method including:
monitoring at least one weather condition;
processing data representing the at least one weather condition, and
adjusting a position of the shield in accordance with the processed data.
According to another aspect of the present invention there is provided a catch mechanism including:
a first member pivotably connected to a second member,
the first member including a first portion that, in a first configuration, extends into a path of a movable device in use and is arranged such that when a lower part of the movable device strikes the first portion when travelling in a first direction, the first member is pivoted to a second configuration where it is engageable with an upper part of the movable device and prevents movement of the movable device in an opposite direction until the catch mechanism is disengaged.
The mechanism can further include a disengaging member arranged so that if the movable member is moved in the first direction after the catch mechanism has been engaged, the movable member strikes the disengaging member, which pivots the first member out of the second configuration such that the first portion is moved out of the path of the movable device, thereby allowing the movable device to be moved in the opposite direction.
The mechanism may further include a fixing device arranged to temporarily fix the first member with respect to the second member until the upper portion of the movable device has moved beyond the second portion of the first member after it has been moved out of the second configuration. The fixing device may include a magnetic arrangement. The magnetic arrangement may be mounted on the first member and engage with a metal part of the second member.
The first member may include a second portion arranged such that, when the fixing device is fixing the first member with respect of the second member, the movable device moving in the opposite direction strikes the second portion and causes the fixing device to release the first member from the second member.
The first member may be designed so that the first portion moves (e.g. under gravity) to the first configuration following release of the fixing device.
Whilst the invention has been described above, it extends to any inventive combination of features set out above or in the following description. Although illustrative embodiments of the invention are described in detail herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to these precise embodiments. As such, many modifications and variations will be apparent to practitioners skilled in the art. Furthermore, it is contemplated that a particular feature described either individually or as part of an embodiment can be combined with other individually described features, or parts of other embodiments, even if the other features and embodiments make no mention of the particular feature. Thus, the invention extends to such specific combinations not already described.
The invention may be performed in various ways, and, by way of example only, embodiments thereof will now be described, reference being made to the accompanying drawings in which:
In the example two of the lower horizontal struts 104A, 104B are fitted with fixing members 106 that are part of an example shield system. The fixing members are shown in more detail in
It will be understood that the design and arrangement of the fixing members shown are exemplary only and that many variations are possible. For instance, the cylindrical mounts 204, 206 are designed to receive poles of circular cross-section (as will be described below) but can be of any shape appropriate to receive a member of alternative design. The fixing members in the example can be formed of steel, but it will be appreciated that other materials, and other attachment methods can be used.
There is also a second set of fixing members 106′ attached at intervals along two of the upper struts 104′A, 104′B, the locations corresponding to the locations of the lower fixing members 106 on the lower horizontal struts 104A, 104B. The upper fixing members will normally be identical to the lower fixing members 106, but fixed to the upper struts in an upside-down configuration. It will be understood that the number, design and arrangement of the fixing members shown in the drawings are exemplary only. The shield system in the example is being fitted to one side of the AC structure. This may or may not be the side of the structure that is exposed to the prevailing wind and in some cases, shield systems may be attached to more than one part/side of the structure. The system can conveniently be fixed to existing structures, with or without the need to modify the structure, or may be integrated into a structure during manufacture.
Turning to
The flexible sheets may comprise a mesh or a solid sheet. The mesh may be between 5% and 50% permeable/open, e.g. around 6%, 13%, 25% or 45% permeable/open gauge materials, depending on the application. An examples of a suitable mesh materials is PVC coated polyester. The flexible sheet may be coated with, or formed of, a (preferably non-toxic) material that provides rot-proof qualities, tear resistance and/or UV stability.
Attached to the middle upright 102C is a vertical track 305 onto which a climbing motor 306 is fitted. The climbing motor may be produced from components such as those sold by Lock Antriebstechnik GmbH of Ertingen, Germany. As detailed in
As the motor 306 is driven by a controller, it moves up/down the track and winds the sheets 304A, 304B on/off the rollers 308A, 308B.
In some embodiments, the controller can be at least partially automated. For example, it may receive information or control signals from a remote weather monitoring device 606 via a communications interface 608 that determine the control signals transmitted to the motor 306. Alternatively, the monitoring and processing functionality may be built into the controller 600 itself. One of the weather conditions that may be monitored is wind speed. When the wind speed is relatively low, e.g. less than about 4.0 m/s, then the sheets may be left in a fully closed configuration. When the wind speed is in a medium range, e.g. around 4.1-6.0 m/s, then the sheets may be in a partially open configuration, and the extent of the opening may be directly proportional to the wind speed. When the wind speed is in a high range, e.g. over about 6.1 m/s, then the sheets may be fully open. It will be appreciated that the example ranges and actions described above are exemplary only and variations are possible. Having the shield “automatically” adjustable in this manner can increase its robustness and remove/reduce the need for reinforcing the AC structure when fitted with the shield.
Additionally or alternatively, the controller/processor may take into account factors (e.g. wind direction, air temperature, air pressure, precipitation, and/or various AC key performance indicators) other than wind speed when determining how to adjust the position of the sheets. Additionally, a frost protection measure can be included to prevent the wind shield system operating when there is a build-up of ice to reduce the risk of damage.
Turning to
The fixing arrangement further comprises a first short curved member 704A that is connected to a lower surface of the horizontal side upper strut 104′C and an inner surface of the end upright 102A. One end of the member 704A is located about halfway to three quarters of the distance between 104C and 104′C above the point where lower horizontal struts 104 connect to the upright 102A. Its other end is located about halfway to three quarters of the distance between 102A and 102B from the point where the upper horizontal struts 104′ meet upright 102B. Again, there is a corresponding second short curved member 704B having one end fixed to a corresponding location on the inner surface of middle upright 102C and its other end fixed to the lower surface of middle upper horizontal strut 104′E. There is also a third curved short member 702B extending in a similar manner between end upright 102F and end upper horizontal upright 104′E.
The example curved members can be formed of any suitable material, e.g. steel, and it will be understood that their number, design and arrangement can be varied, e.g. they may be flat, angled sections rather than curved “H” beams. Additional bracing (not shown) can also be added if needed to withstand the expected loads.
There are corresponding upper and lower angled members 882B, 884B connected to the opposed side surface of central upright 102C. There are further upper and lower angled members 882C, 884C connected in a corresponding manner to the other side surface of central upright 102C, as well as further upper and lower members 882D. 884D connected to the opposed side surface of the other end upright 102F. The angled members may be connected in a rigid manner, e.g. by means of welds, to the framework, or may be connected in an adjustable manner, e.g. by means of pivot pins. Adjacent pairs of angled members, e.g. 882A,B; 884A,B and 882C,D; 884C,D may be set at the same or different angles.
Referring to
The first member 904 comprises a substantially flat plate of steel or the like that has been shaped to include various portions. The second example member 908 also has a specific shape, but it will be understood that many variations to the designs and construction shown are possible.
When the upper portion of the part 1000 has moved sufficiently downwards to break contact with the surface of the first portion 1002, the first portion can pivot back towards is previous configuration under the force of gravity. This is assisted by the presence of extending portion 1004 that includes a magnetic component (as described below). The part 1000 and the catch can then be in the configuration shown in
In
To disengage, a user pulls the part 1000 in a downwards direction, as illustrated in
The disengagement of the part 1000 from detent portion 1006 allows the user to move/release the part 1000 in an upwards direction, as illustrated in
Referring to
To re-engage, the movable member 1000′ is moved downwards as shown in
Referring to
The catches described above are robust and easy to use, particularly for larger sheets/blinds, because a user can “automatically” engage/release it by simply moving part of the blind itself, rather than having to manipulate a separate mechanism.
Number | Date | Country | Kind |
---|---|---|---|
0910724.4 | Jun 2009 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2010/050981 | 6/11/2010 | WO | 00 | 1/30/2012 |