1. Field of the Invention
The present invention relates to a shielded cable having flexibility which is applicable to portable electronic devices such as portable AV equipment and mobile telephones.
2. Description of the Related Art
In the field of consumer electronic products, there is AV equipment typified by portable sound reproduction equipment, and so on, and there is also a case where the sound of the equipment itself is heard through earphones (including headphones) using a coaxial cable.
In recent years, a portable television receiver has been also developed, and there is also a case where the sound thereof is heard through earphones the earphones. A cable for earphones is formed by a shielded cable and also used in the transmission of a high-frequency signal of a receiving antenna or the like.
In this manner, the technology of using an earphones cable as an antenna has been proposed.
This kind of cable is used in order to transmit an audio signal (low frequency band), and, for example, in a case where it is used for an application to antennas of VHF and UHF, there is a case where it is not suitable due to a large loss in a high-frequency signal.
Also, in the case of an ordinary coaxial cable called 3C-2V or 5C-2V for a high-frequency signal, although by optimizing high-frequency design, a high-frequency transmission characteristic could become excellent, there was a problem in that it is thick, heavy, and low in flexibility or tensile properties and durability performance at a movable portion is very poor.
Therefore, the applicant proposed a shielded cable which can be used in a movable portion like an earphone cable and transmit a direct-current signal (refers to Japanese Unexamined Patent Application Publication No. 2006-164830).
Since as a principal conductor of the shielded cable, an ordinary annealed copper wire can be used, and also, as a reinforcing filament body, a general-purpose filament body can be used, the cable can be manufactured at a low price.
Also, by using a filament body of a material, which is low in rigidity, but high in tensile strength properties, for a reinforcing filament body of the shielded cable, it becomes possible to prevent occurrence of the breaking of wire by increasing tensile strength without lowering a bending property and flexibility, and also, secure a given electric characteristic.
Also, as an example of an antenna using a coaxial cable, a so-called sleeve antenna is proposed (for example, refers to FIG. 1 of Japanese Unexamined Patent Application Publication No. 2003-249817 and FIG. 1 of Japanese Unexamined Patent Application Publication No. 2003-8333).
In the case of the sleeve antenna, the antenna has a structure in which a signal is transmitted by a coaxial cable and an antenna element is disposed at the leading end of the coaxial cable.
Particularly noteworthy is a folded structure of a ground GND, which is called a sleeve.
The sleeve antenna blocks an electric current, which is carried by an outer covering of the cable, by increasing impedance in terms of high-frequency by the folded structure of the sleeve.
However, in the antenna disclosed in Japanese Unexamined Patent Application Publication No. 2006-164830, since in the case of a sleeve antenna, there is no folded structure, in a case where the antenna is adopted to, for example, a mobile telephone and so on, it is necessary to perform resonance by making a set ground GND and a ground GND of the coaxial cable to function as GND of the antenna.
Therefore, in this antenna, there is a fear that the fact that resonance frequency varies by the length of the connected set ground GND will become a problem.
Also, since the set ground GND also contributes to the radiation of the antenna, in a case such as mobile communication which is used with held by a human body, since the set ground GND is grasped, there is a fear that the gain of the antenna will be affected.
Also, in the above-described sleeve antenna, the coaxial cable is used only for a signal transmission function and an antenna portion has a very complicated structure.
In particular, in the sleeve antenna disclosed in Japanese Unexamined Patent Application Publication No. 2003-249817 (FIG. 1), the sleeve portion includes sheet metal, so that flexibility and design property are poor, and there are disadvantages of a larger size, complication, and a higher price.
The present invention provides a shielded cable which can realize a shielded antenna cable which is low in cost and is excellent in design property and flexibility.
According to an embodiment of the present invention, there is provided a shielded cable including an inner conductor, a first insulator, a first outer conductor, a second insulator, and a second outer conductor, which are coaxially disposed in this order from an inner side, and having an outer circumference coated by an insulation sheath. For example, the inner conductor includes a plurality of element wires, and a filament body formed using a material having higher tensile strength properties than that of the element wire in a portion out of the plurality of element wires, and the first outer conductor and the second outer conductor are formed by braided shields which are braided by a plurality of electrically-conductive element wires.
According to the embodiment of the present invention, a shielded antenna cable which is low in cost and is excellent in design properties and flexibility can be realized.
Hereinafter, embodiments of the present invention will be explained in connection with the drawings.
Also, explanation will be made in the following order.
1. A first embodiment (a first structure example of a shielded cable),
2. A second embodiment (a second structure example of a shielded cable),
3. A third embodiment (a first configuration example of an antenna device),
4. A fourth embodiment (a second configuration example of an antenna device), and
5. A fifth embodiment (a third configuration example of an antenna device).
A shielded cable 10 of this embodiment is formed as a coaxial and double shielded cable. In other words, the shielded cable 10 of this embodiment has a double coaxial cable structure.
[Configuration of Double Shielded Cable]
The shielded cable 10 includes an inner conductor (there is also a case where it is called a central conductor) 11, a first insulator 12, a first outer conductor 13, a second insulator 14, and a second outer conductor 15, which are coaxially disposed in this order from an inner side, and is covered at its outer circumference by an insulation sheath 16.
That is, in the shielded cable 10, the inner conductor 11 is insulated by the first insulator 12, and the first outer conductor 13 is coaxially disposed on the outer circumference of the first insulator 12. Also, in the shielded cable 10, the first outer conductor 13 is insulated by the second insulator 14, and the second outer conductor 15 is coaxially disposed on the outer circumference of the second insulator 14.
Then, the entire outer circumference of the shielded cable 10 is coated by the insulation sheath 16.
The inner conductor 11, the first outer conductor 13, the first outer conductor 13, and the second outer conductor 15 have impedance in terms of high-frequency.
The inner conductor 11 is constituted by one or a plurality of wires.
In the example shown in
As shown in
In the inner conductor 11, a wire made of, for example, a coated polyurethane wire is disposed in a plurality of numbers, and the filament body 112 formed of a material having higher tensile strength properties, for example, an aramid fiber is disposed at a central portion of the wire for tensile measures and bending measures.
In an example of
The polyurethane coating is performed such that, for example, the wire 11-1 has a red color, the wire 11-2 has a green color, and the wire 11-3 has transparency.
These wires are disposed as the inner conductors in a plurality of pieces, for example, by L, R, and G for audio signal transmission.
In this manner, a plurality of inner conductors 11-1, 11-2, and 11-3 are respectively insulated by an insulator (for example, polyurethane), so that they can transmit a plurality of signals in a direct-current pattern.
Also, by spirally twisting and arranging a plurality of inner conductors, thereby combining them in terms of high-frequency, they can be regarded as one conductor at higher frequencies.
Also, as described above, as the filament body 112, an aramid fiber having a high tensile strength property and an excellent heat resistance property can be used. Since the aramid fiber can also be used as a reinforcing fiber of the inner conductor 11, common use of a used material can be realized.
In addition, as the aramid fiber, for example, a commercially available fiber such as Kevlar (the registered trademark of DuPont) or Twaron (the registered trademark of Teijin) can be used.
The first insulator 12 insulates the first outer conductor 13 from the inner conductor 11.
As the first insulator 12, thermoplastic resin such as vinyl chloride, polyethylene (PE), or polypropylene is used.
As the first insulator 12, it is preferable to use tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA) having excellent electric characteristics and heat resistance properties, or cross-linked foamed polyethylene having low dielectric constant or dielectric loss.
The first outer conductor 13 is wrapped around the outer circumference of the first insulator 12, and dielectric constant of the first insulator 12 is adjusted such that characteristic impedance by a coaxial structure of the inner conductor 11 and the first outer conductor 13 becomes 50Ω or 75Ω.
The second insulator 14 insulates the second outer conductor 15 from the first outer conductor 13.
As the second insulator 14, similarly to the first insulator 12, it is preferable to use tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA) having excellent electric characteristics and heat resistance property, or cross-linked foamed polyethylene having low dielectric constant or dielectric loss.
The second outer conductor 15 is wrapped around the outer circumference of the second insulator 14, and dielectric constant of the second insulator 14 is adjusted such that characteristic impedance by a coaxial structure of the first outer conductor 13 and the second outer conductor 15 becomes 50Ω or 75Ω.
As described above, it is preferable that the first insulator 12 and the second insulator 14 are made of a material having a low loss in terms of high-frequency, such as polyethylene or foamed polyethylene.
In this embodiment, the first outer conductor 13 and the second outer conductor 15 are formed of a braided shield which is braided by a plurality of electrically-conductive element wires, for example, a plurality of naked annealed copper wires.
In addition, in the braided shield, compared to a served shield, generation of clearances in the shield is small also at the time of bending, and the braided shield is known as an electrostatic shield method having appropriate flexibility, bending strength, and mechanical strength.
In the braided shield 20, usually, several element wires 21 are taken as one set, the number of sets is called the number of strikes, the number of element wires in one strike is expressed as the number of takings, and the total number of element wires corresponds to “the number of takings“×” the number of strikes”.
In a braided shield of an ultrafine shielded cable, usually, the number of takings is 2 to 10 element wires, and the number of strikes is set to be 10 to 30 sets. In this embodiment, a portion out of the element wires 21 of the braided shield having such a configuration is formed of the filament body 22 of a material having higher tensile strength properties.
The filament body 22 has an outer diameter or thickness, which is approximately the same as that of the element wire 21 constituting the braided shield 20, and is woven into the braided shield 20 in the same manner as the interweaving of the element wires 21.
In this case, for example, if the number of takings is 4, one piece out of the element wires 21 is replaced with the filament body 22, so that ¼ of the whole of the braided shield 20 is the filament body 22.
In addition, as the filament body 22 of a material having higher tensile strength properties than that of the element wire 21 constituting the braided shield 20, any of a metallic wire and a nonmetallic wire may be used.
Also, in a case where, for example, an alloy wire is used as the filament body 22, it is also acceptable that plating or the like having good conductivity is deposited on the metallic wire so as to secure a shield characteristic.
Also, in a case where a nonmetallic wire such as a high-tensile fiber is used as the filament body 22, it is also acceptable to use, for example, a filament body such as a metalized fiber constituted by coating copper or the like on the surface of a high-tensile fiber, or a copper foil yarn constituted by wrapping a rectangular linear copper foil tape around a high-tensile fiber yarn.
Also, in a case where the insulation sheath 16 is formed by molding from an extruder, since heating is involved, a filament body having heat resistant properties is used as the filament body 22.
In this manner, in the first embodiment, shields made using naked annealed copper wires are formed around the first insulator 12 and the second insulator 14.
The shields have a structure braided by the naked annealed copper wires, as described above. By braiding, the coupling between the conductors is further advanced in terms of high-frequency, and even if they are interwoven, they can be regarded as one conductor, so that a high-frequency loss can be further reduced.
In the case of a served shield, shield performance inevitably varies in accordance with a winding pitch, and as the number of windings increases, shielding performance is improved, while flexibility deteriorates.
By interweaving, a structure is obtained in which although clearances are supplemented, flexibility is hardly affected.
The insulation sheath 16 (there is also a case where it is called an outer covering or a jacket) is formed, for example, by molding resin such as styrene elastomer by an extruder.
In
The outer diameter Φ of the first insulator 12 is set to be 0.61 mm.
In this case, the thickness of the first insulator 12 is approximately 0.36 mm. The standard thickness of the first insulator 12 is 0.14 mm.
The outer diameter Φ of the first outer conductor 13 is set to be 0.89 mm.
In this case, the thickness of the first outer conductor 13 is approximately 0.28 mm.
The outer diameter Φ of the second insulator 14 is set to be 2.0 mm.
In this case, the thickness of the second insulator 14 is approximately 1.11 mm. The standard thickness of the second insulator 14 is 0.56 mm.
The outer diameter Φ of the second outer conductor 15 is set to be approximately 2.27 mm.
In this case, the thickness of the second outer conductor 15 is 0.27 mm.
The outer diameter Φ of the insulation sheath 16 is set to be approximately 2.6 mm.
In this case, the thickness of the insulation sheath 16 is 0.33 mm. The standard thickness of the insulation sheath 16 is 0.17 mm.
Next, a shielded cable structure associated with high-frequency impedance of the shielded cable 10 according to the first embodiment is considered.
In these drawings, the inner conductor 11 is stated as a central conductor, the first outer conductor 13 is stated as a coaxial braid A, and the second outer conductor 15 is stated as a coaxial braid B.
A conductor structure is determined in consideration of high-frequency impedance between the central inner conductor 11 and the first insulator 12.
Here,
A passage loss of a coaxial cable having a length of 100 mm was measured.
In a case where the diameter of the inner (central) conductor 11 is approximately Φ0.6 mm and a dielectric constant ∈r of polyethylene of the first insulator 12 is 2 (∈r=2), high-frequency impedance of 50Ω can be obtained by making the diameter of the first outer conductor (braided shield 1, coaxial braid A) to be approximately 0.9 mm.
In addition, by forming the first insulator 12 by foamed polyethylene, it is possible to lower specific inductive capacity, reduce a wavelength shortening effect, and lower a dielectric loss.
Also, softness of the insulator is improved, so that flexibility is improved.
Next, the second insulator 14 is disposed around the first outer conductor (braided shield 1).
Subsequently, the second outer conductor (braided shield 2) 15 is disposed around the second insulator 14.
With respect to the second outer conductor (braided shield 2, coaxial braid B), in a case where two conductors, the first outer conductor (braided shield 1) and the second outer conductor (braided shield 2) 15, are considered, it can be considered as being a coaxial structure, as shown in
By considering the first outer conductor (braided shield 1) 13 as a central conductor, and configuring the second outer conductor (braided shield 2) 15 as a shield wire for the central conductor, a coaxial transmission line can be constructed, as shown in
In this case, when the diameter of the central conductor (braided shield 1) is set to be (Φ0.9 mm, by making the shield to be Φ2.3 mm through the dielectric (second insulator 14), a function as a coaxial cable having characteristic impedance of about 50Ω can be obtained, as shown in
Finally, by disposing an outer covering made of elastomer, which is an insulator, around the second outer conductor (braided shield 2), a cable is completed.
As explained above, the shielded cable 10 of this embodiment include the inner conductor 11, the first insulator 12, the first outer conductor 13, the second insulator 14, and the second outer conductor 15, which are coaxially disposed in this order from an inner side, and is covered at its outer circumference by the insulation sheath 16.
The inner conductor 11 includes a plurality of element wires 111, and a filament body 112 formed using a material having higher tensile strength properties than that of the element wire in a portion of the element wires 111.
The first outer conductor 13 and the second outer conductor 15 are formed by braided shields which are braided by a plurality of electrically conductive element wires.
Therefore, according to the shielded cable of this embodiment, the following effects can be obtained.
That is, the shielded cable of this embodiment can be manufactured at a low price.
Also, the shielded cable can realize improvement in design property, and improvement in flexibility (flexure and tension of the cable, and simplification of a structure).
Further, the shielded cable of this embodiment can realize a shielded antenna cable which is low in price, and excellent in design property and flexibility, and further, realize improvement in high-frequency characteristic.
In addition, a case where the shielded cable according to this embodiment is used as the shielded antenna cable will be described in detail later.
Differences between the shielded cable 10A according to the second embodiment and the shielded cable 10 according to the first embodiment are as follows.
That is, the shielded cable 10A according to the second embodiment is configured such that a coupling state of the second insulator 14 and the first outer conductor 13 is equal to or coarser than a coupling state of the second insulator 14 and the second outer conductor 15.
In the shielded cable 10A shown in
The reason to dispose the seal film 17 between the second insulator 14 and the first outer conductor 13 is explained below.
The shielded cable 10 shown in
A first step ST1 is a process which twists the inner conductor 11.
A second step ST2 is the extrusion molding process of the first insulator 12.
A third step ST3 is a process which interweaves the first outer conductor (braided shield) 13.
A fourth step ST4 is the extrusion molding process of the second insulator 14.
A fifth step ST5 is a process which interweaves the second outer conductor (braided shield) 15.
A sixth step ST6 is the extrusion molding process of the insulation sheath 16.
In the manufacturing process described above, in the fourth step ST4, the extrusion molding process of the second insulator 14 is carried out at a temperature raised up to about 250° C.
As described above, in a case where the second insulator 14 is formed of polyethylene, there is a fear that the following trouble will occur.
That is, since a melting point of polyethylene (PE) is 110° C., in a case where the second insulator 14 is formed around the first outer conductor (braided shield 1) 13 by extrusion molding, there is a case where melted resin soaks into an interwoven portion of the braid, so that adhesion strength excessively rises.
In a case where such a state occurs, drawing-out work of electric wires for performing a terminal treatment, for example, a soldering treatment, of the braided shield becomes difficult.
Therefore, in the second embodiment, as shown in FIG. 12B, after the third step ST3, the process which interweaves the first outer conductor (braided shield) 13, as a seventh step ST7, the process of winding a seal film on the first outer conductor (braided shield 1) 13 is provided.
After this process, the fourth step ST4, the extrusion molding process of the second insulator 14, is performed.
In this manner, by winding the seal film 17 on the first outer conductor (braided shield 1) 13 in order to prevent resin from soaking into the braid, the film can play a role to prevent the flow of resin to the braided shield, so that terminal work becomes easier.
By winding the seal film 17 on the first outer conductor (braided shield 1) 13, the flow of resin to the braided shield can be reliably prevented.
However, the seal film 17 is not necessarily provided.
For example, in a case where PET having a melting point of 264° C. is used as the second insulator 14, in the fourth step ST4, the extrusion molding process of the second insulator 14, the second insulator 14 is not melted even at a temperature raised up to about 250° C.
Also, even if resin flows to the first outer conductor 13 by the use of polyethylene as the first insulator 12, and even if the flow of resin is prevented by using PET, influence on the terminal work is small.
In this case, even if the seal film 17 is not provided, a configuration can be made such that the coupling state of the second insulator 14 and the first outer conductor 13 is equal to or coarser than the coupling state of the second insulator 14 and the second outer conductor 15.
According to the second embodiment, in addition to the above-described effects of the first embodiment, the flow of resin to the braided shield can be prevented, so that there is an advantage in that terminal work becomes easier.
Next, configuration examples of the antenna devices in which the shielded cables 10 and 10A according to the first and second embodiments are applied are explained. Thereafter, characteristics of the antenna device in which the shielded cable according to this embodiment is applied are considered including the comparison with an ordinary rod antenna, a dipole antenna, and the like.
First, three configuration examples of the antenna devices in which the shielded cables 10 and 10A according to the first and second embodiments are applied are explained as a third embodiment, a fourth embodiment, and a fifth embodiment.
In the antenna device 30, basically, the shielded cables 10 and 10A according to the first and second embodiments are applied as a shielded antenna cable 10B of the antenna.
Therefore, in the shielded antenna cable 10B shown in
In the antenna device 30, the shielded antenna cable 10B has a first connection portion 40 on one end side and a second connection portion 50 on the other end side.
Also, the antenna device 30 has an antenna element 60 which is connected to the other end side of the shielded antenna cable 10B by the second connection portion 50.
The shielded antenna cable 10B is a cable which is connected to an electronic device, and the whole or a portion of the shielded antenna cable 10B functions as an antenna for receiving a radio or television signal.
Also, as described above, the shielded antenna cable 10B includes the inner conductor 11, the first insulator 12, the first outer conductor 13, the second insulator 14, and the second outer conductor 15, which are coaxially disposed in this order from an inner side, and is covered at its outer circumference by the insulation sheath 16.
That is, in the shielded cable 10, the inner conductor 11 is insulated by the first insulator 12, and the first outer conductor 13 is coaxially disposed on the outer circumference of the first insulator 12. Further, in the shielded cable 10, the first outer conductor 13 is insulated by the second insulator 14, and the second outer conductor 15 is disposed on the outer circumference of the second insulator 14.
In the shielded cable 10, the whole of the outer circumference thereof is coated by the insulation sheath 16.
Then, the inner conductor 11, the first outer conductor 13, the first outer conductor 13, and the second outer conductor 15 have impedance in terms of high-frequency.
The first connection portion 40 is formed as a connector, which is connected to a terminal 71 of a receiver (tuner) 70 of an electronic device, on one end side of the shielded antenna cable 10B.
The first connection portion 40 is formed such that, for example, when the connection portion is connected to the terminal 71 of the receiver 70, the inner conductor 11 is supplied with power and the first outer conductor 13 is connected to a ground GND of the receiver 70.
That is, in an example shown in
The second connection portion 50 has a connection substrate (printed substrate) 51, and connects the other end side of the shielded antenna cable 10B and the antenna element 60.
In the second connection portion 50, the first outer conductor 13 of the shielded antenna cable 10B is connected to the antenna element 60, and the inner conductor 11 is connected to the second outer conductor 15.
The first connection portion 40 and the second connection portion 50 are formed by molding, or as case bodies.
The antenna device 30 is designed such that with respect to the double shielded cable 10B, as described above, a transmission line is constructed between the inner conductor 11 and the first outer conductor 13 and impedance is, for example, 50Ω.
Also, a coaxial structure is similarly constructed between the first outer conductor 13 and the second outer conductor 15 of the double shielded cable 10B.
By adjusting a length between the first outer conductor 13 and the second outer conductor 15, impedance of the coaxial cable can be easily controlled.
Then, by using the coaxial structure according to this embodiment, a high-frequency trap by the coaxial cable can be configured.
According to the third embodiment, since the shielded cables 10 and 10A according to the first and second embodiments are applied as the shielded antenna cables 10B of the antenna, it is possible to configure the antenna device which is not affected by a set side, as will be described in detail later.
Also, with just a terminal treatment of the cable, a sleeve portion can be configured, so that the sleeve portion can be configured without using a sheet metal, or a sleeve element as a separate part. Therefore, the sleeve portion can be configured very simply and at a low price and designed in accordance with only the thickness of the cable and a balance pace.
Also, since it is not necessary to form the antenna into a T-shape like a dipole antenna, the configuration of the component also becomes simpler, and the antenna can be used as a linear antenna.
The antenna device 30A of the fourth embodiment is different from the above-described antenna device 30 of the third embodiment in that in a second connection portion 50A, the other end of a shielded antenna cable 10B is connected to the antenna element 60 through a balance-unbalance converter (balun) 52.
Specifically, the inner conductor 11 and the first outer conductor 13 of the shielded antenna cable 10B are connected to the balun 52.
One terminal of the balun 52 is connected to the second outer conductor 15 of the shielded antenna cable 10B, and the other terminal of the balun 52 is connected to the antenna element 60.
The first outer conductor 13 is connected to the antenna element 60 through the balun 52, and the inner conductor 11 is connected to the second outer conductor 15 through the balun 52.
The balun 52 is mounted on the printed substrate (connection substrate) 51, and then, the cable is connected to a land of the printed board 51, so that wiring as an antenna device can be completed. In this manner, this mounting structure has a very simple structure.
In addition, the balun element is not limited to a 1:1 structure, but, for example, a 1:4 structure is also acceptable.
According to the fourth embodiment, since the balun 52 is applied in addition to the configuration of the third embodiment, it is possible to configure the antenna device which is not further affected by a set side, as will be described in detail later.
In addition, as shown in
In this case, one terminal of the balun 52, which is connected to the antenna element 60, is connected to an input of the amplifier 53, and an output of the amplifier 53 is connected to the inner conductor 11.
Also, the first outer conductor 13 is connected to a ground GND.
One end of the other terminal of the balun 52 is connected to the ground GND, and the other end is connected to the second outer conductor 15.
In this manner, by disposing the amplifier 53, improvement in receiver sensitivity can be realized.
The antenna device 30B of the fifth embodiment is different from the above-described antenna device 30A of the fourth embodiment in that an shielded antenna cable 10C has at a portion thereof in a longitudinal direction a removed portion 80, in which the insulation sheath 16 and the second outer conductor 15 are removed.
Here, a portion in a longitudinal direction of the shielded antenna cable 10C is a position which is spaced (nλ)/2 from the other end of the cable, wherein λ is a wavelength.
In
Specifically, the removed portion 80 is formed at a position of 160 mm from the other end.
According to the fifth embodiment, in addition to the effects of the fourth embodiment, it is possible to adjust a frequency of the antenna device.
[Characteristics of Antenna Device]
Hereinafter, characteristics, etc. of the antenna device in which the shielded cable according to this embodiment is applied are considered including the comparison with an ordinary rod antenna, a dipole antenna, and the like.
First, features in a case where the shielded cable according to this embodiment is applied to the antenna device are explained in comparison with the rod antenna, etc.
A mobile telephone 200 is configured so as to be able to open and close a first housing 201 and a second housing 202.
The example shown in
In
An antenna which is used in a mobile telephone, etc. is an antenna of a ¼ monopole system, which is typified by the rod antenna 210 as shown in
This antenna is an antenna which functions as an antenna by performing resonance by using the rod antenna and the set ground GND. In the case of the rod antenna 210, wide-band and gain are excellent, so that there is no problem.
However, in the case of this example, as shown in
Also, in a case where a noise of the set is large, there is a problem in that sensitivity deteriorates due to the reception of a self-radiated noise.
A noise measurement system 300 has a spectrum analyzer 310.
As shown in
If set noise measures are taken and the set ground GND is optimized, the rod antenna is a very good antenna. However, it can be found that the antenna is also an antenna in which measures of the set side is necessary.
On the contrary, as an antenna in which influence of the set is reduced as much as possible, there is a sleeve antenna.
In the case of the sleeve antenna, by keeping a power feed point P of the antenna clear of a main body by a coaxial wire, a structure in which a set noise source is kept away from the antenna can be realized, so that it is possible to improve receiving performance by the improvement of C/N.
From
As already described in the section of a background art, in the case of the sleeve antenna, the antenna has a structure in which a signal is transmitted by a coaxial cable and an antenna is disposed at the leading end of the coaxial cable. Especially noteworthy is a folded structure of a ground GND, which is called a sleeve.
This blocks an electric current, which is carried by an outer covering of a cable, by increasing impedance in terms of high-frequency by the folded structure of the sleeve. This sleeve structure complicates a mechanism, thereby causing increase in cost.
The mobile telephone 200 is configured so as to be able to open and close the first housing 201 and the second housing 202.
The example shown in
In
This example shows a structure in which the antenna is drawn by the coaxial cable, thereby being kept away from the set, and is an example in which the antenna is fitted to a state which is optimum in a UHF band.
In the case of the sleeve antenna 230, since there is no folded structure, resonance is performed by making the set ground GND and the ground GND of the coaxial cable to function as the ground GND of the antenna.
Therefore, the problem is that resonance frequency varies in accordance with the length of the connected set ground GND. Also, since the set ground GND also contributes to the radiation of the antenna, in a case such as mobile communication which is used with held by a human body, since the set ground GND is grasped, there is a problem in that the gain of the antenna is affected.
In order to reduce the influence of the cable and the set ground GND while reducing a noise from the set, it is necessary to provide a folded ground GND.
Although various folded structures can be given, all the structures are large in size, complicated, and very difficult to be realized at a low price and stylish.
This is related to the function of the sleeve.
When configuring the sleeve antenna, it is necessary to put a certain distance between the coaxial wire and the sleeve portion.
This is because in a signal transmission path, characteristic impedance is related to a signal transmission distance.
Also, this is because, as shown in
As shown in
Therefore, in a case where a folded structure as shown in
Therefore, in this embodiment, as shown in
First, in the antenna devices 30, 30A, and 30B, in a case where transmission of a signal is performed by a coaxial cable, by making the inner conductor 11 and the first outer conductor (braided shield 1) 13 function as a coaxial cable, signal transmission is performed.
Next, the shield cables 10, 10A, 10B, and 10C of this embodiment have a structure in which a folded structure is provided by using the second outer conductor (braided shield 2) 15.
In the case of a sleeve antenna having a folded structure previously proposed, when constructing a folded portion, there is an example in which the folded portion is constructed by using a sheet metal, or a case where the folded portion is constructed by performing a terminal treatment on a shield portion of an ordinary high-frequency coaxial cable called 5C-2V, and folding back the portion.
However, there were problems with all the structures or designs.
On the contrary, by using the shield cables 10, 10A, 10B, and 10C according to this embodiment, the folded structure can be easily realized.
Also, there is a cable having a double shield including a first ply made by a braid or a served shield and a second ply made of an electrically-conductive seal such as an aluminum foil. However, even if this is used in the folded structure, the double shield is coupled in terms of high-frequency, so that the folded structure is not obtained.
On the contrary, by making a coaxial structure be double, as in the shield cables 10, 10A, 10B, and 10C according to this embodiment, a structure using high-frequency characteristic of a coaxial cable can be obtained for the first time.
This is because a folded structure of a sleeve utilizes a characteristic in which in a case where the leading end of a coaxial cable is short-circuited, impedance becomes infinity at a length of (¼)λ.
This means that by making the first outer conductor (braided shield 1) 13 and the second outer conductor (braided shield 2) 15 be a coaxial structure with the consideration of impedance, a characteristic depending on a wavelength in the transmission path can be realized.
The mobile telephone 200 is configured so as to be able to open and close a first housing 201 and a second housing 202.
The example shown in
In
In the antenna device 30 according to the third embodiment having no balun, null is partly generated by the ground GND of the set. However, as shown in
The mobile telephone 200 is configured so as to be able to open and close a first housing 201 and a second housing 202.
The example shown in
In
In the antenna device 30A according to the fourth embodiment, a sleeve antenna is realized by connecting the inner conductor 11 to the second outer conductor (braided shield 2) 15 of the cable through the balun 52.
By this structure, as shown in
That is, the antenna device 30A according to the fourth embodiment uses the balun while using a double shield, so that an antenna which is not further affected by the set can be configured.
The example shown in
In
In the antenna device 30B according to the fifth embodiment, even in a case where the cable is long, the resonance frequency can be adjusted only by cutting the insulation sheath 16 and the second outer conductor 15 of the double shield, so that a linear dipole antenna can be configured.
As shown in
[Consideration of Characteristics According to the Presence or Absence of a Balun]
Next, characteristics according to the presence or absence of a balun are considered in connection with an antenna of a dipole system.
In
As shown in
In this case, as shown in
This represents that radio waves carried by the coaxial cable are received.
Therefore, this means that in a case where a balun is not provided, due to the influence of the length of the cable and the size of the set, in a portion of frequencies, characteristics are improved, and in another portion of frequencies, reversely, there is a fear that a cancel gain will be attenuated.
In
In
An antenna can be ideally realized which does not receive a vertically-polarized wave, is very broad in band, and has excellent gain.
Also, since the antenna is drawn from the set by the coaxial cable, it can be said that the antenna is an antenna which does not receive a noise of the device and is excellent with respect to a noise.
Therefore, the use of the balun 260 is necessary to construct an antenna which is not dependent on a cable.
In
The antenna device of
Also in this case, the antenna device is excellent in terms of gain and functions as a dipole.
[Consideration of Folded Structure]
In
The antenna device of
In this case, as shown in
This is because that the length of the antenna element extends over the combined lengths of the coaxial cable 230 and a set substrate.
In
As shown in
That is, it can be said that if the cable is not kept away from the substrate sufficiently, it is difficult to maintain a characteristic.
On the contrary, the antenna device 30A with the balun according to the fourth embodiment is not dependent on the ground GND of the main body of the set (mobile telephone) and has an improved antenna gain, as previously explained in connection with
Also, in the antenna device 30 having no balun according to the third embodiment, as previously explained in connection with
Therefore, in a case where the antenna device is configured by using the double shielded cable according to this embodiment, while the balun is not necessarily provided, excellent characteristics can be obtained. However, by using the balun, it is possible to configure an antenna which is not further affected by the set.
Also, as shown in
Also, since it is not necessary to form the antenna into a T-shape like a dipole antenna, the configuration of the component also becomes simpler, and the antenna can be used as a linear antenna.
The present application contains subject matter related to that disclosed in Japanese Priority Patent Application JP 2009-069089 filed in the Japan Patent Office on Mar. 19, 2009, the entire content of which is hereby incorporated by reference.
It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and alterations may occur depending on design requirements and other factors insofar as they are within the scope of the appended claims or the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2009-069089 | Mar 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4376920 | Smith | Mar 1983 | A |
4642417 | Ruthrof et al. | Feb 1987 | A |
5150442 | Desmons | Sep 1992 | A |
6800810 | Page | Oct 2004 | B1 |
6815617 | Gebs et al. | Nov 2004 | B1 |
20060011376 | Van Den Berg et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
10-334750 | Dec 1998 | JP |
2006-164830 | Jun 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20100236810 A1 | Sep 2010 | US |