This application claims priority to Taiwan Application Serial Number 108108090, filed Mar. 11, 2019, which is herein incorporated by reference in its entirety.
The present of the disclosure relates to a shift register and a gate driver. More particularly, the present disclosure relates to a shift register and a gate driver which can stably output a low voltage.
In a general display panel structure, a gate driver is composed of a plurality of shift registers, the gate driver is capable of outputting a stable signal when the gate driver is working. However, the circuit for controlling an output signal in a conventional shift register circuit lacks a design for stably controlling the driving voltage. Further, it affects the stability of the output signal and causes the output signal to be wrong. Therefore, it is necessary to design a shift register circuit which is capable of stably controlling a driving voltage.
One aspect of the present disclosure is a shift register circuit. The shift register circuit includes an input circuit, a driving circuit and a pull down circuit. The input circuit is configured to receive a first clock signal and coupled to a first node of the shift register circuit, the input circuit outputs a first input signal to the first node in response to the first clock signal. The driving circuit is configured to receive the first clock signal and a second clock signal, and coupled to the first node, the driving circuit adjusts a first voltage of the first node in response to the first clock signal and the second clock signal. The pull-down circuit, is configured to receive the first voltage of the first node and coupled to an output terminal of the shift register circuit, the pull-down circuit outputs the first voltage to the output terminal in response to the first voltage of the first node.
Another aspect of the present disclosure is a gate driver including a plurality of shift registers. The plurality of shift registers are connected in series with each other. A first shift register circuit of the plurality of shift register circuits is configured to receive a first clock signal and a second clock signal, the first shift register circuit adjusts a voltage of a first node of the first shift register circuit in response to the first clock signal and the second clock signal, the first shift register circuit outputs a first voltage in response to the voltage of the first node. A second shift register circuit of the plurality of shift register circuits is configured to receive a third clock signal and a fourth clock signal, wherein the second shift register circuit adjusts a voltage of a second node of the second shift register circuit in response to the third clock signal and the fourth clock signal, the second shift register circuit outputs a second voltage in response to the voltage of the second node. The first clock signal and the third clock signal are inverted each other, the second clock signal and the fourth clock signal respectively generate a pulse signal during different periods.
It will be understood that, in the description herein and throughout the claims that follow, the terms “comprise” or “comprising,” “include” or “including,” “have” or “having,” “contain” or “containing” and the like used herein are to be understood to be open-ended, i.e., to mean including but not limited to.
It will be understood that, in the description herein and throughout the claims that follow, the terms “coupled”, “electrically coupled”, “electrically connect” may indicate that two or more components being directly physically contacted or electrically contacted with each other, or indirectly physically contacted or electrically contacted with each other. That is, intervening elements may be present. Moreover, “electrically connect” or “connect” may further refer to the interoperation or interaction between two or more elements.
Referring to
Referring to
It should be noted that, for convenience, only the n−1th stage shift register circuit 122, the nth stage shift register circuit 124, the n+1th stage shift register circuit 126, and the n+2th stage shift register 128 are shown in
Referring to
The input circuit 124a is configured to receive the clock signal CK4 and coupled to a node Q, the input circuit 124a outputs the output signal EM[n−1] to the node Q in response to the clock signal CK4. The output signal EM[n−1] is presented to a high voltage state and a low voltage state during different periods, therefore, the input circuit 124a outputs the voltage indicated by the output signal EM[n−1] to the node Q in response to the clock signal CK4. The input circuit 124a includes a transistor T1, the transistor T1 includes a first terminal, a second terminal and a control terminal. The first terminal of the transistor T1 is configured to receive the output signal EM[n−1], the second terminal of the transistor T1 is coupled to the node Q, the control terminal of the transistor T1 is configured to receive the clock signal CK4, and the transistor T1 is selectively conducted according to the clock signal CK4.
The driving circuit 124b is configured to receive the clock signal CK2 and the clock signal CK4, and coupled to the node Q. The driving circuit 124b controls or adjusts the voltage of the node Q in response to the clock signal CK2 and the clock signal CK4. In an embodiment, the driving circuit 124b includes a transistor T2, a transistor T3 and a capacitor C1. The transistor T2 and the transistor T3 include a first terminal, a second terminal and a control terminal. The first terminal of the transistor T2 is configured to receive the voltage VGH, the second terminal of the transistor T2 is coupled to a node B, the control terminal of the transistor T2 is configured to receive the clock signal CK4, and the transistor T2 is selectively conducted according to the clock signal CK4. The first terminal of the transistor T3 is coupled to the second terminal of the transistor T2 and the node B, the second terminal of the transistor T3 is configured to receive the voltage VGL, the control terminal of the transistor T3 is configured to receive the clock signal CK2, and the transistor T3 is selectively conducted according to the clock signal CK2. The capacitor C1 includes a first terminal and a second terminal, the first terminal of the capacitor C1 is coupled to the second terminal of the transistor T2, the first terminal of the transistor T3 and the node B, and the second terminal of the capacitor C1 is coupled to the node Q.
The pull-down circuit 124c is configured to receive the voltage of the node Q and coupled to the node Q and the output terminal, the pull-down circuit 124c outputs the voltage VGL to the output terminal in response to the voltage of the node Q. The pull-down circuit 124c includes a transistor T4, the transistor T4 includes a first terminal, a second terminal and a control terminal. The first terminal of the transistor T4 is configured to receive the voltage VGL, the second terminal of the transistor T4 is coupled to the output terminal, the control terminal of the transistor T4 is configured to receive the voltage of the node Q, and the transistor T4 is selectively conducted according to the voltage of the node Q.
The regulator circuit 124d is configured to receive the output signal EM[n−1] and the voltage of the node Q, and coupled to the node Q. The regulator circuit 124d controls the voltage of a node K in response to the output signal EM[n−1], controls the voltage of a node P in response to the voltage of the node Q, and outputs the voltage VGH to the node Q in response to the voltage of the node P. In an embodiment, the regulator circuit 124d includes a transistor T5—a transistor T8 and a capacitor C2, the transistor T5—the transistor T8 each include a first terminal, a second terminal and a control terminal. The first terminal of the transistor T5 is coupled to the node K, the second terminal of the transistor T5 is configured to receive the voltage VGH, the control terminal of the transistor T5 is configured to receive the output signal EM[n−1], and the transistor T5 is selectively conducted according to the output signal EM[n−1].
In addition, the first terminal of the transistor T6 is configured to receive the voltage VGL, the second terminal of the transistor T6 is coupled to the node P, the control terminal of the transistor T6 is coupled to the node K, and the transistor T6 is selectively conducted according to the voltage of the node K. The first terminal of the transistor T7 is coupled to the second terminal of the transistor T6, the second terminal of the transistor T7 is configured to receive the voltage VGH, the control terminal of the transistor T7 is coupled to the node Q, and the transistor T7 is selectively conducted according to the node Q. The first terminal of the transistor T8 is coupled to the node Q, the second terminal of the transistor T8 is configured to receive the voltage VGH, the control terminal of the transistor T8 is coupled to the node P, and the transistor T8 is selectively conducted according to the voltage of the node P. The capacitor C2 includes a first terminal and a second terminal, the first terminal of the capacitor C2 is configured to receive the clock signal CK4, and the second terminal of the capacitor C2 is coupled to node K.
The pull-up circuit 124e is configured to receive the voltage of the node P and coupled to output terminal, and the pull-up circuit 124e outputs the voltage VGH to the output terminal in response to the voltage of the node P. The pull-up circuit 124e includes a transistor T9, the transistor T9 includes a first terminal, a second terminal and a control terminal. The first terminal of the transistor T9 is coupled to the output terminal, the second terminal of the transistor T9 is configured to receive voltage VGH, the control terminal of the transistor T9 is coupled to the node P, and the transistor T9 is selectively conducted according to the voltage of the node P.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In summary, by periodically coupling the node Q to a voltage which is lower than the low voltage, the output signal can output a low voltage stably and continuously such that the subsequent circuit can operate stably to avoid outputting an erroneous signal.
Those skilled in the art will appreciate that in various embodiments, the various circuit elements can be implemented by various types of digital or analog circuits, or can be respectively implemented by different integrated circuit chips. Individual components can also be integrated into a single integrated circuit. The above is an example, and the present disclosure is not limited thereto. Electronic components such as resistors, capacitors, diodes, transistor switches, and the like can be made of various suitable components. For example, according to the requirements, the transistors T1˜T9 can be implemented by metal-oxide-semiconductor field-effect transistor (MOSFET), bipolar junction transistor (BJT) or other various types of transistor.
The present disclosure has been disclosed in the above embodiments, and is not intended to limit the disclosure. Anyone skilled in the art can make various changes and refinements without departing from the spirit and scope of the present disclosure. The scope of protection of the content is subject to the definition of the scope of the patent application. Therefore, the scope of protection of the present disclosure is subject to the definition of the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
108108090 | Mar 2019 | TW | national |