This application claims the benefit of a patent application, “Shift Register Unit, Gate Drive Circuit and Display Device”, No. 201620006125.X for utility model in China filed on Jan. 4, 2016, the full disclosure of which is incorporated herein by way of reference.
The present disclosure relates to the technical field of display, in particular to a shift register unit, a gate drive circuit and a display device.
As shown in
Embodiments of the present disclosure provide a shift register unit, a gate drive circuit and a display device to at least partially alleviate the problem that in the pull-down holding phase of a display period, since the potential of the pull-down control node PD_CN cannot remain at a low level, the pull-down node PD has an electric leakage, resulting in noises of the gate drive signal and the pull-up node.
One embodiment of the present disclosure provides a shift register unit, comprising:
a gate drive signal output terminal, a first clock signal input terminal, a second clock signal input terminal, a low level input terminal, a pull-up control unit, a pull-down unit, a pull-down node control unit and a pull-down control node control unit;
a pull-up node disposed between the pull-up control unit and the pull-down node control unit;
a pull-down node disposed between the pull-down unit and the pull-down node control unit; and
a pull-down control node disposed between the pull-down control node control unit and the pull-down node control unit.
The pull-up control unit is connected to the gate drive signal output terminal and the pull-up node. In the input phase and output phase of the display period, the pull-up control unit pulls the potential of the pull-up node up to a high level. In the output phase of the display period, the pull-up control unit controls the gate drive signal output terminal to output a high level.
The pull-down unit is connected to the pull-down node and the gate drive signal output terminal. In a pull-down holding phase of the display period, the pull-down unit controls the gate drive signal output terminal to output a low level under the control of the pull-down node.
The pull-down node control unit is connected to the first clock signal input terminal, the pull-up node, the pull-down node, the pull-down control node and the low-level input terminal. In the input phase and output phase of the display period, the pull-down node control unit controls the pull-down node to be connected to the low-level input terminal under the control of the pull-up node. In a pull-down holding phase of the display period, the pull-down node control unit controls the pull-down node to be connected to the first clock signal input terminal under the control of the pull-down control node.
The pull-down control node control unit is connected to the first clock signal input terminal, the second clock signal input terminal, the low level input terminal and the pull-down control node. In the pull-down holding phase of the display period, the first clock signal input through the first clock signal input terminal and the second clock signal input through the second clock signal input terminal have opposite phases. When the first clock signal has a high level, the pull-down control node control unit controls the pull-down control node to be connected to the first clock signal input terminal. When the second clock signal has a high level, the pull-down control node control unit controls the pull-down control node to be connected to the low level input terminal.
In one embodiment, the pull-down control node control unit comprises a first pull-down control node control module and a second pull-down control node control module.
The first pull-down control node control module is connected to the pull-down control node, the second clock signal input terminal and the low level input terminal. In the pull-down holding phase of the display period, when the second clock signal has a high level, the first pull-down control node control module controls the pull-down control node to be connected to the low-level input terminal.
The second pull-down control node control module is connected to the first clock signal input terminal and the pull-down control node. In the pull-down holding phase of the display period, when the first clock signal has a high level, the second pull-down control node control module controls the pull-down control node to be connected to the first clock signal input terminal.
In one embodiment, the first pull-down control node control module comprises a first pull-down control node control transistor, with its gate connected to the second clock signal input terminal, its first pole connected to the pull-down control node, and its second pole connected to the low level input terminal.
In one embodiment, the second pull-down control node control module comprises a second pull-down control node control transistor, with its gate and first pole both connected to the first clock signal input terminal, and its second pole connected to the pull-down control node.
In one embodiment, the pull-down control node control unit further comprises a third pull-down control node control module connected to the pull-down control node, the pull-up node and the low level input terminal. In the input phase and output phase of the display period, the third pull-down control node control module controls the pull-down control node to be connected to the low level input terminal under the control of the pull-up node.
In one embodiment, the third pull-down control node control module comprises a third pull-down control node control transistor, with its gate connected to the pull-up node, its first pole connected to the pull-down control node, and its second pole connected to the low level input terminal.
In one embodiment, the pull-down node control unit comprises: a first pull-down node control transistor, with its gate connected to the pull-up node, its first pole connected to the pull-down node and its second pole connected to the low level input terminal; and a second pull-down node control transistor with its gate connected to the pull-down control node, its first pole connected to the first clock signal input terminal, and its second pole connected to the pull-down node.
In one embodiment, the pull-down unit comprises a pull-down transistor, with its gate connected to the pull-down node, its first pole connected to the gate drive signal output terminal, and its second pole connected to the low level input terminal.
In one embodiment, the shift register unit further comprises an input terminal. The pull-up control unit comprises an input module, a memory capacitor, a pull-up node reset module and a pull-up module.
The input module is connected to the input terminal and the pull-up node. In the input phase of the display period, the input module pulls the potential of the pull-up node to a high level.
A first end of the memory capacitor is connected to the pull-up node, and a second end of the memory capacitor is connected to the gate drive signal output terminal. In the output phase of the display period, the memory capacitor bootstraps a pull-up of the potential of the pull-up node.
The pull-up node reset module is connected to the pull-down node, the pull-up node and the low level input terminal. When the potential of the pull-down node has a high level, the pull-up node reset module controls the potential of the pull-up node to be a low level.
The pull-up module is connected to the pull-up node, the second clock signal input terminal and the gate drive signal output terminal. When the potential of the pull-up node has a high level, the pull-up module controls the gate drive signal output terminal to be connected to the second clock signal input terminal.
In one embodiment, the input module comprises an input transistor, with its gate and first pole connected to the input terminal, and its second pole connected to the pull-up node.
The pull-up node reset module comprises a pull-up node reset transistor, with its gate connected to the pull-down node, its first pole connected to the pull-up node and its second pole connected to the low level input terminal.
The pull-up module comprises a pull-up transistor, with its gate connected to the pull-up node, its first pole connected to the second clock signal input terminal and its second pole connected to the gate drive signal output terminal.
In one embodiment, the shift register unit further comprises a reset terminal and a reset unit.
The reset unit is connected to the reset terminal, the pull-up node, the gate drive signal output terminal and the low level input terminal. When signals input through the reset terminal have a high level, the reset unit controls the pull-up node and the gate drive signal output terminal to be connected to the low level input terminal.
In one embodiment, the reset unit comprises:
a first reset transistor, with its gate connected to the reset terminal, its first pole connected to the pull-up node and its second pole connected to the low level input terminal; and
a second reset transistor, with its gate connected to the reset terminal, its first pole connected to the gate drive signal output terminal and its second pole connected to the low level input terminal.
One embodiment of the present disclosure provides a gate drive circuit, comprising multiple stages of the above described shift register units.
In one embodiment, each of the shift register units comprises a reset terminal and an input terminal.
Except for a first stage of shift register unit, the input terminal of each stage of shift register unit is connected the gate drive signal output terminal of a previous adjacent stage of shift register unit.
Except for a last stage of shift register unit, the reset terminal of each stage of shift register unit is connected the gate drive signal output terminal of a next adjacent stage of shift register unit.
One embodiment of the present disclosure provides a display device, comprising the above-mentioned gate drive circuit.
Compared to the prior art, the shift register unit, gate drive circuit and display device provided by the embodiments of the present disclosure use the pull-down control node control unit to at least partially alleviate the problem that in the pull-down holding phase of a display period, since the potential of the pull-down control node cannot remain at a low level, the pull-down node has an electric leakage, resulting in noises of the gate drive signal and the pull-up node.
Technical solutions in each embodiment of the present application will be now described clearly and completely with reference to the drawings. Obviously, the described embodiments are only some, instead of all, of the embodiments of the present application. All other embodiments that can be obtained by those ordinarily skilled in the art on the basis of the embodiments in the present application without using any inventive effort shall fall into the protection scope of the present application.
As shown in
A pull-up node PU is disposed between the pull-up control unit 11 and the pull-down node control unit 13. A pull-down node PD is disposed between the pull-down unit 12 and the pull-down node control unit 13. A pull-down control node PD_CN is disposed between the pull-down control node control unit 14 and the pull-down node control unit 13.
The pull-up control unit 11 is connected to the gate drive signal output terminal OUTPUT and the pull-up node PU. In an input phase and output phase of a display period, the pull-up control unit 11 pulls the potential of the pull-up node PU up to a high level. In an output phase of the display period, the pull-up control unit 11 controls the gate drive signal output terminal OUTPUT to output a high level.
The pull-down unit 12 is connected to the pull-down node and the gate drive signal output terminal OUTPUT. In a pull-down holding phase of the display period, the pull-down unit 12 controls the gate drive signal output terminal OUTPUT to output a low level under the control of the pull-down node PD.
The pull-down node control unit 13 is connected to the first clock signal input terminal, the pull-up node PU, the pull-down node PD, the pull-down control node PD_CN and the low-level input terminal. In the input phase and output phase of the display period, the pull-down node control unit 13 controls the pull-down node PD to be connected to the low-level input terminal under the control of the pull-up node. In a pull-down holding phase of the display period, the pull-down node control unit 13 controls the pull-down node PD to be connected to the first clock signal input terminal under the control of the pull-down control node PD_CN.
The pull-down control node control unit 14 is connected to the first clock signal input terminal, the second clock signal input terminal, the low level input terminal and the pull-down control node PD_CN. In the pull-down holding phase of the display period, the first clock signal CLKB input through the first clock signal input terminal and the second clock signal CLK input through the second clock signal input terminal have opposite phases. When the first clock signal CLKB has a high level, the pull-down control node control unit 14 controls the pull-down control node PD_CN to be connected to the first clock signal input terminal. When the second clock signal CLK has a high level, the pull-down control node control unit 14 controls the pull-down control node PD_CN to be connected to the low level input terminal.
The shift register unit uses the pull-down control node control unit 14 to at least partially alleviate the problem that in the pull-down holding phase of a display period, since the potential of the pull-down control node PD_CN cannot remain at a low level, the pull-down node PD has an electric leakage, resulting in noises of the gate drive signal and the pull-up node.
As shown in
The first pull-down control node control module 141 is connected to the pull-down control node PD_CN, the second clock signal input terminal and the low level input terminal. In the pull-down holding phase of the display period, when the second clock signal CLK has a high level, the first pull-down control node control module 141 controls the pull-down control node PD_CN to be connected to the low-level input terminal.
The second pull-down control node control module 142 is connected to the first clock signal input terminal and the pull-down control node PD_CN. In the pull-down holding phase of the display period, when the first clock signal CLKB has a high level, the second pull-down control node control module 142 controls the pull-down control node PD_CN to be connected to the first clock signal input terminal.
In the shift register unit as shown in
As shown in
As shown in
As shown in
The shift register unit as shown in
As shown in
The pull-down node control unit may comprise:
a first pull-down node control transistor, with its gate connected to the pull-up node PU, its first pole connected to the pull-down node PD and its second pole connected to the low level input terminal; and
a second pull-down node control transistor, with its gate connected to the pull-down control node PD_CN, its first pole connected to the first clock signal input terminal, and its second pole connected to the pull-down node PD.
The pull-down unit may comprise: a pull-down transistor, with its gate connected to the pull-down node PD, its first pole connected to the gate drive signal output terminal, and its second pole connected to the low level input terminal.
As for specific circuit structures of the above-mentioned pull-down node control unit and pull-down unit, they will be described in further detail later with reference to the drawings.
As shown in
The input module 111 is connected to the input terminal INPUT and the pull-up node PU. In the input phase of the display period, the input module 111 pulls the potential of the pull-up node PU up to a high level.
A first end of the memory capacitor C1 is connected to the pull-up node PU, and a second end of the memory capacitor C1 is connected to the gate drive signal output terminal OUTPUT. In the output phase of the display period, the memory capacitor C1 bootstraps a pull-up of the potential of the pull-up node.
The pull-up node reset module 112 is connected to the pull-down node PD, the pull-up node PU and the low level input terminal. When the potential of the pull-down node PD has a high level, the pull-up node reset module 112 controls the potential of the pull-up node PU to be a low level.
The pull-up module 113 is connected to the pull-up node PU, the second clock signal input terminal and the gate drive signal output terminal OUTPUT. When the potential of the pull-up node PU has a high level, the pull-up module 113 controls the gate drive signal output terminal OUTPUT to be connected to the second clock signal input terminal.
The shift register unit as shown in
The input module may comprise: an input transistor, with its gate and first pole both connected to the input terminal INPUT, and its second pole connected to the pull-up node PU.
The pull-up node reset module may comprise a pull-up node reset transistor, with its gate connected to the pull-down node PD, its first pole connected to the pull-up node PU and its second pole connected to the low level input terminal.
The pull-up module may comprise a pull-up transistor, with its gate connected to the pull-up node PU, its first pole connected to the second clock signal input terminal, and its second pole connected to the gate drive signal output terminal OUTPUT.
Specific circuit structures of the above-mentioned input module and pull-up module will be described in further detail later with reference to the drawings.
As shown in
The reset unit 15 is connected to the reset terminal RESET, the pull-up node PU, the gate drive signal output terminal OUTPUT and the low level input terminal. When signals input through the reset terminal are of a high level, the reset unit 15 controls the pull-up node PU and the gate drive signal output terminal OUTPUT to be both connected to the low level input terminal. A low level VSS is input through the low level input terminal.
The shift register unit as shown in
The reset unit comprises:
a first reset transistor, with its gate connected to the reset terminal, its first pole connected to the pull-up node PU and its second pole connected to the low level input terminal; and
a second reset transistor, with its gate connected to the reset terminal, its first pole connected to the gate drive signal output terminal, and its second pole connected to the low level input terminal.
Specific circuit structure of the above-mentioned reset unit will be described in further detail later with reference to the drawings.
A specific circuit diagram of the shift register unit will be illustrated below by means of an embodiment.
As shown in
The pull-down control node control unit comprises:
a first pull-down control node control transistor M1, with its gate connected to the second clock signal input terminal through which the second clock signal CLK is input, its first pole connected to the pull-down control node PD_CN, and its second pole connected to the low level input terminal through which the low level VSS is input;
a second pull-down control node control transistor M2, with its gate and first pole connected to the first clock signal input terminal through which the first clock signal CLKB is input, and its second pole connected to the pull-down control node PD_CN; and
a third pull-down control node control transistor M3, with its gate connected to the pull-up node PU, its first pole connected to the pull-down control node PD_CN, and its second pole connected to the low level input terminal.
The pull-down node control unit comprises:
a first pull-down node control transistor M4, with its gate connected to the pull-up node PU, its first pole connected to the pull-down node PD, and its second pole connected to the low level input terminal; and
a second pull-down node control transistor M5, with its gate connected to the pull-down control node PD_CN, its first pole connected to the first clock signal input terminal, and its second pole connected to the pull-down node PD.
The pull-down unit comprises: a pull-down transistor M6, with its gate connected to the pull-down node PD, its first pole connected to the gate drive signal output terminal OUTPUT, and its second pole connected to the low level input terminal.
The pull-up control unit comprises:
an input transistor M7, with its gate and first pole connected to the input terminal INPUT and its second pole connected to the pull-up node PU;
a memory capacitor C1, with its first end connected to the pull-up node PU, and its second end connected to the gate drive signal output terminal OUTPUT, and in the output phase of the display period, the memory capacitor bootstraps a pull-up of the potential of the pull-up node PU;
a pull-up node reset transistor M8, with its gate connected to the pull-down node PD, its first pole connected to the pull-up node PU, and its second pole connected to the low level input terminal, and controlling the potential of the pull-up node PU to be a low level VSS when the potential of the pull-down node PD is of a high level; and
a pull-up transistor M9, with its gate connected to the pull-up node PU, its first pole connected to the second clock signal input terminal, and its second pole connected to the gate drive signal output terminal OUTPUT.
The reset unit comprises:
a first reset transistor M10, with its gate connected to the reset terminal RESET, its first pole connected to the pull-up node PU and its second pole connected to the low level input terminal; and
a second reset transistor M11, with its gate connected to the reset terminal RESET, its first pole connected to the gate drive signal output terminal OUTPUT, and its second pole connected to the low level input terminal.
In the pull-down holding phase of the display period, the first clock signal CLKB and the second clock signal CLK have opposite phases.
Referring to
In
As shown in
In the gate drive circuit, each shift register unit comprises a reset terminal and an input terminal. Except for a first stage of shift register unit, the input terminal of each stage of shift register unit is connected the gate drive signal output terminal of a previous adjacent stage of shift register unit. Except for a last stage of shift register unit, the reset terminal of each stage of shift register unit is connected the gate drive signal output terminal of a next adjacent stage of shift register unit.
A display device according to an embodiment of the present disclosure comprises the above-mentioned gate drive circuit.
The above described are embodiments of the present disclosure. It shall be noted that to those ordinarily skilled in the art, many improvements and variations can be made without departing from the principle of the present disclosure. All these improvements and variations shall fall into the protection scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2016 2 0006125 U | Jan 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/102404 | 10/18/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/118141 | 7/13/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20080080661 | Tobita | Apr 2008 | A1 |
20140185737 | Jang | Jul 2014 | A1 |
20170039968 | Chen et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
101221818 | Jul 2008 | CN |
103915058 | Jul 2014 | CN |
104732939 | Jun 2015 | CN |
205282053 | Jun 2016 | CN |
20110077108 | Jul 2011 | KR |
Entry |
---|
International Search Report and Written Opinion in PCT/CN2016/102404 dated Jan. 24, 2017, with English translation. |
Number | Date | Country | |
---|---|---|---|
20180268755 A1 | Sep 2018 | US |