This is the first application filed for the present invention.
The present invention relates generally to three-dimensional logical puzzles and, in particular, to cubic puzzles.
The famous Rubik's Cube®, named after its inventor Ernö Rubik, has to date sold well over 200,000,000 units worldwide and has become a cultural icon, spawning a virtual industry of three-dimensional logical puzzles. The design of the Rubik's Cube® is described and illustrated in Hungarian Patent HU-B-170062. See also Rubik's U.S. Pat. No. 4,378,116, U.S. Pat. No. 4,378,117 and U.S. Pat. No. 4,410,179.
Today, approximately a quarter of a century later, the original Rubik's Cube®, not to mention its numerous variants, remains popular, not only with the so-called “speed-cubers” but also with the general population. Despite the existence of published solutions for these rotatable cubic puzzles, people of all ages and backgrounds are still drawn to the challenge that these toys pose. In addition to the classic 3×3×3 Rubik's Cube®, there is the 2×2×2 Rubik's Mini Cube®, the 4×4×4 Rubik's Revenge®, and the 5×5×5 Rubik's Professor Cube®.
Although there are many different variants of these rotatable cubic puzzles, to the best of Applicant's knowledge, they are all fundamentally shifting-type puzzles, and therefore similar or analogous techniques and thinking processes can be applied to solve them. It would therefore be highly desirable to provide an improved cubic puzzle that combines two different types of motion to thus present a new type of challenge to cubic puzzle enthusiasts.
In general, and as will be elaborated below, the present invention is an improved cubic puzzle enabling both shifting and sliding motion. This new cubic puzzle improves upon the classic Rubik's Cube® by superimposing sliding motion to the underlying shifting motion of the cube, thus providing a radically new challenge to cubic puzzle enthusiasts. The sliding motion is provided by a cluster of square slidable elements superimposed over the outer faces of the shiftable cubic elements of the cube. Grooves (or alternatively tongues or lips) can be provided in the outer faces of the shiftable cubic elements to enable the superimposed slidable elements to slide relative to the underlying faces of the cube.
In accordance with a main aspect of the present invention, a cubic puzzle includes a central core element, a plurality of cubic elements connected to the central core element, the cubic elements of each of the six surfaces of the cubic puzzle being grouped into rotatable groups of shiftable cubic elements that can be rotatably shifted relative to the central core element about orthogonal axes of the cubic puzzle, and a plurality of slidable elements slidably superimposed on the shiftable cubic elements.
This invention can be applied to a cubic puzzle having 26 cubic elements connected to the central core element to define a 3×3×3 cubic puzzle.
This invention can also be applied to a cubic puzzle comprising 8 shiftable cubic elements connected to the central core element to define a 2×2×2 cubic puzzle.
This invention can furthermore be applied to a cubic puzzle comprising 56 shiftable cubic elements connected to the central core element to define a 4×4×4 cubic puzzle.
This invention can furthermore be applied to a cubic puzzle comprising 98 cubic elements connected to the central core element to define a 5×5×5 cubic puzzle.
The embodiments of the present invention will now be described with reference to the appended drawings in which:
These drawings are not necessarily to scale, and therefore component proportions should not be inferred therefrom.
In general, and as will be elaborated below in greater detail, the present invention is an improved cubic puzzle enabling both shifting and sliding motion. This new cubic puzzle improves upon the classic Rubik's Cube® by superimposing slidable elements on modified underlying shiftable cubic elements of the cube. By adding sliding motion to the traditional shifting motion of the Rubik's Cube, a substantially more challenging and exciting puzzle is created. The sliding motion is provided by a cluster of square slidable elements superimposed over the outer faces of the underlying cubic elements of the cube. The superimposed slidable elements can be connected via tongue and groove connections or a similar retaining means to enable the superimposed slidable elements to slide relative to the underlying shiftable cubic elements of the cube.
Therefore, in its broadest conception, the cubic puzzle has a central core element to which the rotatable cubic center elements are attached to retain the shiftable cubic elements. The shiftable cubic elements of each of the six surfaces of the cubic puzzle are grouped with their respective rotatable cubic center element into six rotatable groups. Each of these six groups of rotatable and shiftable cubic elements can be rotatably shifted relative to the central core element about the three orthogonal axes of the cubic puzzle. The cubic puzzle further includes a plurality of slidable (or “sliding”) elements that are slidably superimposed on the rotatable and shiftable cubic elements to thereby provide sliding motion in addition to shifting motion. This innovative cubic puzzle therefore provides two distinct types of motion—sliding and shifting—whereas the traditional Rubik's Cube was only capable of providing one type of motion, namely shifting.
In one embodiment of the invention, each group of rotatable and shiftable cubic elements of the cubic puzzle comprises at least one circular slideway around which a respective cluster of superimposed slidable elements can rotate. In other words, the cluster can rotate when the slidable elements constituting the cluster are caused to slide along the circular slideway. Preferably, a circular slideway is provided on each of the six surfaces of the cubic puzzle to slidably retain superimposed slidable elements on all six surfaces. Alternatively, circular slideways can be provided on a subset of the six surfaces of the cube, for example, on only one surface, on only two surfaces, on only three surfaces, on only four surfaces, or on only five surfaces.
In one set of embodiments, the cubic puzzle has grooves in the underlying shiftable cubic elements for receiving tongues (or “lips”) of the corresponding superimposed slidable elements. In other words, some of the shiftable cubic elements comprise one or more arcuate grooves (that together with the grooves of neighboring elements constitute one or more circular slideways). These grooved circular slideways engage and retain tongues that protrude downwardly from the undersides of the superimposed slidable elements.
In another set of embodiments, the cubic puzzle has tongues (or “lips”) protruding from the shiftable cubic elements for engaging grooves formed in the undersides of the superimposed slidable elements. In other words, some of the shiftable cubic elements comprise arcuate tongues (that together with the tongues of neighboring elements constitute one or more circular slideways). These tongues/lips protrude upwardly from shiftable elements to engage, and slide within, the grooved slideway formed in the undersides of the superimposed slidable elements.
In yet another set of embodiments, the cubic puzzle can have a mix of grooves and tongues in or on the shiftable cubic elements. In other words, some of the shiftable cubic elements can have grooves or tongues or both to form the one or more slideways needed for the superimposed slidable elements to slide relative to the shiftable elements.
The improved cubic puzzle according to the present invention can be embodied as a 3×3×3 cube, a 2×2×2 cube, a 4×4×4 cube, a 5×5×5 or indeed as any N×N×N cube where N is any integer greater than 2. The 3×3×3 cube is preferred because this particular embodiment improves directly on the classic Rubik's Cube, which to date has been (by far) the most popular three-dimensional puzzle amongst puzzle enthusiasts.
In the preferred embodiment, i.e. in the 3×3×3 cubic puzzle, the shiftable cubic elements comprise a plurality of shiftable edge elements having arcuate grooves in two outer faces of each shiftable edge element for engaging tongues that protrude downwardly from undersides of the superimposed slidable elements. The shiftable cubic elements also comprise a plurality of shiftable corner elements having arcuate grooves in three outer faces of each shiftable corner element for engaging tongues that protrude downwardly from undersides of the superimposed slidable elements. The shiftable cubic elements also comprise a plurality of rotatable center elements for rotationally receiving superimposed slidable center elements. In this arrangement, the arcuate grooves together form one circular slideway on each of the six surfaces of the cubic puzzle so that the superimposed slidable elements can be rotated as a cluster over the underlying rotatable and shiftable cubic elements.
In another preferred embodiment of the 3×3×3 cubic puzzle, the shiftable cubic elements comprise a plurality of shiftable edge elements having arcuate tongues on two outer faces of each shiftable edge element for engaging arcuate grooves in undersides of the superimposed slidable elements. The shiftable cubic elements also comprise a plurality of shiftable corner elements having arcuate tongues on three outer faces of each shiftable corner element for engaging arcuate grooves in undersides of the superimposed slidable elements. The shiftable cubic elements also comprise a plurality of rotatable center elements for rotationally engaging superimposed slidable center elements. In this arrangement, the arcuate tongues together form one circular slideway protruding from each of the six surfaces of the cubic puzzle so that the superimposed slidable elements can be rotated as a cluster over the underlying rotatable and shiftable cubic elements.
In the most preferred embodiment of the 3×3×3 cubic puzzle, there are 26 cubic elements connected to the central core element to define a 3×3×3 cubic puzzle upon which are superimposed 54 square slidable elements dimensioned to correspond with each of the 54 cubic faces of the 26 underlying cubic elements. In this embodiment, the 26 cubic elements comprise: (i) six rotatable center elements for rotatably retaining six respective superimposed slidable center elements; (ii) twelve shiftable edge elements; and (iii) eight shiftable corner elements for together (with the edge elements) defining six circular slideways. Each circular slideway is intended to slidably retain four slidable edge elements and four slidable corner elements to enable the slidable edge elements and the slidable corner elements to rotate with their respective slidable center element as a cluster over the group of shiftable cubic elements.
In a 2×2×2 embodiment of the cubic puzzle, there are only 8 shiftable cubic elements connected to the central core element to define a 2×2×2 cubic puzzle upon which are superimposed 24 square slidable elements dimensioned to correspond with each of the 24 cubic faces of the 8 shiftable cubic elements. The 8 shiftable cubic elements comprise eight shiftable corner elements defining six circular slideways. Each circular slideway is intended to slidably retain four slidable corner elements to enable the slidable corner elements to rotate as a cluster over the group of shiftable cubic elements.
In a 4×4×4 embodiment of the cubic puzzle, there are 56 shiftable cubic elements connected to the central core element to define a 4×4×4 cubic puzzle upon which are superimposed 96 square slidable elements dimensioned to correspond with each of the 96 cubic faces of the 56 shiftable cubic elements. The 56 shiftable cubic elements comprise: (i) twenty-four shiftable center elements arranged in two-by-two interior arrays on each of the six surfaces, each two-by-two array of shiftable center elements defining an inner slideway for slidably retaining four superimposed slidable center elements; (ii) twenty-four shiftable edge elements; and (iii) eight shiftable corner elements together (with the edge elements) defining six outer circular slideways concentric with the inner circular slideways for slidably retaining forty-eight slidable edge elements and twenty-four slidable corner elements to enable the slidable edge elements and the slidable corner elements to rotate with their respective two-by-two arrays of slidable center elements as a cluster over the group of shiftable cubic elements.
In a 5×5×5 embodiment of the cubic puzzle, there are 98 cubic elements connected to the central core element to define a 5×5×5 cubic puzzle upon which are superimposed 150 square slidable elements dimensioned to correspond with each of the 150 cubic faces of the 98 cubic elements. The 98 underlying cubic elements comprise: (i) six rotatable center elements for rotatably retaining six respective superimposed slidable center elements; (ii) twenty-four shiftable inner edge elements; and (iii) twenty-four shiftable inner corner elements arranged such that eight shiftable inner elements surround each of the six shiftable center elements to define an inner slideway for slidably retaining forty-eight respective superimposed slidable inner elements; and (iv) twelve shiftable outer central edge elements; and (v) twenty-four shiftable outer side edge elements; and (vi) eight shiftable outer corner elements together defining six outer circular slideways concentric with the inner circular slideways for slidably retaining ninety-six slidable outer elements to enable the slidable outer elements to rotate with their respective slidable inner elements and their respective slidable center element as a cluster over the group of shiftable cubic elements.
As noted above, other N×N×N embodiments of the cubic puzzle can be created for N>5 but these are not described explicitly herein as the popularity of these higher order puzzles is relatively low. However, the principles described herein can be used to create higher order puzzles where desired.
In each of the foregoing embodiments, it is preferable that superimposed slidable elements be provided on all six surfaces of the cubic puzzle. In other words, it is preferable that there be six clusters of slidable elements so that each face of the cube has its own superimposed cluster of slidable elements. As aforementioned, as an alternative implementation, the cubic puzzle could also have slidable elements superimposed on fewer than all six surfaces. For example, a cubic puzzle could have a cluster of slidable elements on only a single face.
Specific features, aspects and preferred embodiments of the present invention will now be described with reference to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
It is to be understood that even though only single grooves or lips are used for the elements of the present disclosure, the exact same results could be obtained with multiple grooves or lips on a given element without departing from the present invention. Likewise, any suitable combination or arrangement of grooves and lips can be employed to enable the sliding motion.
The techniques disclosed in the prior art for arranging the display of colors, emblems, logos or other visual indicia on the outer surfaces of the puzzles to modulate the difficulty level are applicable to the present invention.
Different visual indicia patterns (e.g. colors, logos, emblems, symbols, etc.) can be used for identification of the puzzles.
It should be noted that advertising, corporate logos or team logos could also be placed onto the surfaces of the puzzles to create promotional vehicles or souvenirs.
It will also be noted that exact dimensions are not provided in the present description since these puzzles can be constructed in a variety of sizes.
While the puzzle elements and parts are preferably manufactured from plastic, these puzzles can also be made of wood, metal, or a combination of the aforementioned materials. These elements and parts may be solid or hollow. The motion of the puzzle mechanism can be enhanced by employing springs, bearings, semi-spherical surface knobs, grooves, indentations and recesses, as is well known in the art and are already well described in the prior art of shifting and sliding puzzles. Likewise, “stabilizing” parts can also be inserted in the mechanism to bias the moving elements to the “rest positions”, as is also well known in the art.
It is understood that the above description of the preferred embodiments is not intended to limit the scope of the present invention, which is defined solely by the appended claims.