This U.S. patent application claims priority to German Application DE 10 2008 022 551.7, filed Apr. 30, 2008, which is incorporated by reference herein in its entirety
The present invention pertains to a shifting device for an automatic transmission of a motor vehicle.
A shifting device for an automatic transmission of a motor vehicle which comprises a gear-shift lever, which can be moved in an automatic shift track to select gear-shift positions, is known from DE 100 57 299 A1. This automatic shift track can comprise, for example, gear-shift positions for parking, reverse, neutral, and drive. The known shifting device also comprises a locking mechanism, which can be switched at least between a locked state and a released state. It also comprises a release button for changing the state of the locking mechanism. In the locked state, the locking mechanism blocks the movement of the gear-shift lever at least into the park and reverse positions and at least out of the park position. In the released state, the locking mechanism allows the gear-shift lever to be moved at least between Park, Reverse, Neutral, and Drive.
The known shifting device also comprises a manual shift track, in which the gear-shift lever can be moved between a middle position, an upshift position, and a downshift position. A transverse shift track is also provided so that the gear-shift lever can be switched between the automatic shift track and the manual shift track.
A shifting device is known from DE 22 50 985, the locking mechanism of which can be converted from the drive shift position into the neutral shift position by pressing once on a release button and converted from the neutral shift position to the reverse shift position only by pressing on the release button again. As a result, the unintentional actuation of the release button by the driver will not have the effect of engaging reverse gear while the vehicle is traveling forward. Maneuvering becomes extremely inconvenient as a result of this measure, however, because the release button must be actuated twice each time it is desired to drive in reverse.
DE 199 13 835 A1 describes another shifting device, the locking mechanism of which comprises an arresting gate with gate sections assigned to the individual shift positions, into which sections a blocking element, which can be actuated by the release button, can engage. A pivot gate is provided at an offset from the arresting gate. The blocking element can be moved into this pivot gate from the neutral shift position by actuating the release button with greater force. This makes it possible to pivot the gear-shift lever into a horizontal rest position. As a result, the gear-shift lever can be accommodated in a very small space, which is desirable in cases where the space in which the shifting device is located is used, for example, as a passageway between a cockpit and a sleeping cabin.
A shifting device is known from U.S. Pat. No. 4,612,820 in which the gear-shift lever can be blocked in different shift positions by means of a locking mechanism. This blocking action can be released by means of a release button, which, for this purpose, is installed on the grip of the gear-shift lever and cooperates with a pushrod. The pushrod extends through the interior of the gear-shift lever, and a drive connection is established between it and a step-up block supported externally on the gear-shift lever with freedom to move up and down. This step-up block is pretensioned by a spring into a arresting gate and comprises a graduated structure in the stroke direction with shoulders of different widths. The arresting gate has openings of different depths, which extend transversely to the stroke direction and which are assigned to the various shift positions. As long as the release button remains unactuated, the gear-shift lever is blocked in Park, and can be moved into Neutral and Drive. In addition, it can be moved out of the park position Reverse into Neutral, but not back. By pressing the release button down, the wider shoulder is moved out of the arresting gate, so that only the narrower shoulder is active. As a result, the gear-shift lever can be moved between any of the shift positions Reverse, Neutral, and Drive, whereas it remains impossible to move into Park or out of it. The narrow shoulder can be moved out of the arresting gate only after the release button has been pushed down even farther. Then the gear-shift lever can be moved freely between the shift positions mentioned. In the case of a rapid sequence of shifting operations, which typically occurs during maneuvering, the driver cannot precisely calculate the amount of force needed to actuate the release button, which means that there is the danger that he could actuate the release button too strongly and when trying to shift into Reverse wind up in Park by mistake.
The present invention deals with the problem of providing, for a shifting device of the type indicated above, an improved or at least a different embodiment, which is characterized in particular in that it realizes improved shifting convenience or actuation convenience and/or that it has increased stability and/or that it comprises a higher level of failure safety.
The invention relates to the general idea of assigning a partially released state to the locking mechanism in addition to the locked state and the released state. In this partially released state, the gear-shift lever can be moved into Reverse and out of it, whereas movement of the gear-shift lever into Park and out of it remains blocked. So that this partially released state can be activated, the release button is equipped with two actuation positions. In a first actuation position, the locking mechanism is moved into the partially released state. In the second actuation position, the locking mechanism is moved into the released state. According to the proposed design of the shifting device, the driver, when the partially released state is present, can shift very easily between Drive and Reverse without the danger of unintentionally shifting into Park. These actuation possibilities are especially advantageous when maneuvering the vehicle, because, with this design, the driver can rely on the haptic properties of the shifting device and thus is free to devote more attention the surroundings of the vehicle. Maneuvering can thus be carried out more conveniently. It is especially advantageous that the actuation positions, which are realized by means of the release button, can be differentiated from each other.
Through the provision of two different actuation positions for the release button, the driver can intrusively differentiate between the two different release states of the locking mechanism, which facilitates the operation of the shifting device, especially for maneuvering operations, and thus increases the operating convenience of the shifting device.
According to an especially advantageous embodiment, the release button can be designed and/or arranged in such a way that the two actuation positions can be differentiated haptically from each other. As a result of the haptic properties of the mechanism which come into play when the release key is actuated, therefore, the user receives feedback which clearly informs him of the actuation position which the release key is currently occupying. This haptic feedback can be realized, for example, by a change in the kinematics (relationship between distance and force) of the movement which occurs upon arrival in the first actuation position.
In accordance with an advantageous embodiment, the release button can realize the two actuation positions by means of different actuating pressures and/or actuation distances, where the actuating pressure and/or the actuation distance for activating the second actuation position is/are greater that that/those for activating the first actuation position. This means that, after actuation of the release button, the second actuation position can be reached by pressing or moving the release button beyond the first actuation position. The driver therefore realizes intuitively that the shifting device will first allow him initially to shift into Reverse and that he can shift into Park only by pushing the release button down even farther.
In an especially advantageous embodiment, the release button can be moved out of its unactuated, resting position by pressing it against an initial resistance, where this initial resistance forms a pressure stage, and when this is overcome, the release button snaps into the second actuation position and then can be held there by pressing against a holding resistance, which is weaker than the initial resistance. As a result of this design, the user can reach the first actuation position very easily and intuitively, where the snapping effect makes it possible for him to verify the process haptically. The reduced holding force in the first actuation position facilitates frequent shifting between the Reverse, Normal, and Drive, which makes it much easier to maneuver the vehicle, for example.
In an elaboration, it can be provided that the release button can be moved out of its first actuation position into the second actuation position by pressing it down against an actuation resistance which is greater than the holding resistance. This means that the driver must exert a stronger actuating force when he wants to select Park. This represents a more effective way of preventing the driver from unintentionally shifting the release button into its second actuation position.
The shifting device presented here is especially suitable for use in conjunction with a dual-clutch automatic transmission. A dual-clutch automatic transmission of this type makes it possible to shift extremely quickly from one gear to the next. The proposed shifting device offers the possibility of exploiting this property of the dual-clutch transmission in an especially effective manner. In particular, dynamic shifting operations can be realized in the automatic shift track when maneuvering or when the automatic transmission is being actuated in the manual shift track. The dynamic shifting operations or dynamic actuating operations which are possible with such a dual-clutch transmission require an especially sturdy shifting device, which can be subjected to high loads. The proposed shifting device has the desired high degree of sturdiness and operating reliability. The dual-clutch automatic transmission can be designed in an especially advantageous manner as a seven-gear automatic transmission, which comprises seven forward gears. In addition, the shifting device presented here is especially suitable for use in sports vehicles or in a vehicles with a rear-mounted engine. Dynamic shifting operations are frequently desired precisely in the case of sports vehicles, especially those with a rear-mounted engine. As a result of higher degree of actuation convenience and its increased reliability, the sturdy shifting device presented here makes such dynamic shifting operations possible.
Other important features and advantages of the invention can be derived from the drawings, and from the associated description of the figures on the basis of the drawings. The features cited above and to be explained below are applicable not only in the combinations specifically stated but also in other combinations or even alone without leaving the scope of the present invention.
Preferred exemplary embodiments of the invention are illustrated in the drawings and are explained in greater detail in the following description, where the same, similar, or functionally equivalent components are designated by the same reference numbers.
In schematic fashion,
As shown in
The shift gate 5 shown in
To realize the shift gate 5, the gear-shift lever 2 according to
The shift block 10 has a housing 12, which is at least partially omitted in
The shifting device 1 comprises a locking mechanism 13, at least part of which can be seen in, for example,
The locking mechanism 13 is also designed so that can be converted into a partially released state. In this partially released state, the gear-shift lever 2 can be moved not only into the possible gear-shift positions allowed by the locked state but also into and out of the Reverse R position. In contrast to the released state, the gear-shift lever 2, when in this partially released state, cannot be moved into or out of the Park P position. This means that the movement of the gear-shift lever 2 in the automatic shift track 6 into the Park P position and out of that position is blocked when the partially released state is active. The partially released state therefore makes it possible for the driver to shift between the Reverse R and Drive D positions without the danger that he could shift into Park P by mistake; in particular, this partially released state makes it possible for the driver to accomplish this shifting without the need for visual confirmation that he is shifting correctly. This partially released state is therefore especially suitable for maneuvering operations of the vehicle.
To realize this partially released state, the release button 4 has two actuation positions. In a first actuation position, the locking mechanism 13 is converted to the partially released state. In a second actuation position, the locking mechanism is converted into the released state. When the release button 4 is not actuated, the locking mechanism 13 is converted into the released state. It is especially advantageous here that the different states of the locking mechanism 13 can be set or changed by the use of only a single release button 4.
It is advisable for the release button 4 to be designed so that it realizes the two actuation positions in a manner which can be differentiated haptically, specifically on the basis of different actuating pressures and/or different actuation distances. Preferred here is an embodiment in which different actuating pressures lead to different actuation distances. For example, the release button 4 is preferably designed as a rocker button, which us supported so that it can be pivoted around a pivot axis 14 on the gear-shift lever 2 or grip 3. In the present example, the release button 4 is arranged on the grip 3 so that it is accessible from above and so that it can be actuated by the thumb of the hand grasping the hand grip 3 in an ergonomically favorable manner. To actuate the release button 4, the user uses his thumb to press the actuating button 4 downward. So that the different actuation states can be differentiated from each other, the actuation distance for setting the second actuation position is longer than the actuation distance for setting the first actuation position. In addition or alternatively, the actuating pressure for setting the second actuation position can also be greater than the actuating pressure for setting the first actuating position.
An ergonomically especially favorable actuation, which can be realized in an especially intuitive manner, can be achieved if the release button 4 can be moved out of its unactuated, resting position assigned to the locked state by pressing it down against an initial resistance. Said initial resistance forms a pressure stage, and when this is overcome, the release button 4 snaps into the first actuation position and then can be held there by pressing against a holding resistance. Said holding resistance is weaker than the initial resistance required to overcome the pressure stage. In other words, to reach the first actuation position, the user must exert a comparatively large amount of force to overcome the initial resistance and thus to actuate the release button 4. Then, to maintain the first actuation position, the user need exert only a comparatively weak holding force to compensate for the holding resistance.
So that the release button 4 can now be switched from its first actuation position into the second actuation position, it can be provided according to an effective design that, for this purpose, pressure must again be exerted against an actuation resistance which is greater than the holding resistance. In other words, to move from the first actuation position into the second actuation position, the user must press the release button 4 down harder than is necessary just to hold the release button 4 in the first actuation position. This configuration can be experienced and learned intuitively.
It is advisable for realizing the second actuation position to provide a stop, which limits the movement or pivot path of the release button 4. Optionally, the actuation resistance which must be overcome to reach the second actuation position can be at least as strong as the initial resistance which must be overcome to reach the first actuation position. As a result, the two actuation positions differ not only on the basis of the different actuation distances but also on the basis of the different actuating pressures or actuation forces.
So that the kinematics for the release button 2 presented here can be realized, the gear-shift lever 2 comprises a tubular body 15, in which a pushrod 16, visible in
The length of the slot 19 can be used, for example, to realize end stops to define the second actuation position of the release button 4 and also to define a rest position for the release button 4, which is present when the release button 4 is unactuated. The restoring force of the previously mentioned spring is strong enough in the first actuation position and necessarily also in the second actuation position to move the pushrod 16 along with the slide 17 automatically back to, and to pretension the release button 4 in, its rest position. In particular, the restoring force is thus sufficiently strong that the latching element 21 can travel past the latching edge 24.
The locking mechanism 13 comprises at least one blocking element 26, which is arranged on the gear-shift lever 2 with the freedom to move up and down, a drive connection being established between the release button 4 and this blocking element. The release button 4 and said blocking element 13 cooperate in such a way that actuation of the release button 4 generates a stroke of the blocking element 26. In the present example, the blocking element 26 is attached to the slide 17, which is connected to the release button 4 by the pushrod 16. As shown in
In
The locking mechanism 13 therefore serves to block switching movements of the gear-shift lever 2 into at least one gear-shift position 9 and/or out of at least one gear-shift position 9. Simultaneously, the release button 4 on the gear-shift lever 2 serves to release the blocking action of the locking mechanism 13. As shown in
The shifting device 1 is also equipped with a blocking mechanism 36, which can be seen especially clearly in
The two blocking elements 37 are formed on a common blocking lever 41. This blocking lever 41 is supported pivotably around a pivot axis 42 and comprises an actuating arm 43, a drive connection being established between this arm and an actuator 44. The blocking lever 41 in the embodiment shown here also comprises an emergency actuation lever 45, which, in the event that the actuator 44 fails, can be actuated manually to move the blocking elements 37 out of their blocking position.
The blocking lever 41 comprises two blocking arms 46, each of which, in the present example, forms one of the blocking elements 37. To the extent that the blocking elements 37 are reduced to the angled terminal sections 40 at the ends of the blocking arms 46, the blocking arms 46 themselves comprise the blocking elements 37, namely, the terminal sections 40.
In the present example, one of the two blocking elements 37 is arranged on one side of the gear-shift lever 2, the other on the other side. As a result, the gear-shift lever 2 is supported symmetrically and without torque in the Park P position. It is also advisable to provide two separate blocking gates 38, only one of which is shown in
In the embodiment shown here, each of the blocking gates 38 is also equipped with an additional gate section 48, which is assigned to the Neutral N position. The blocking element 37 cooperates in the Neutral N position with this additional gate section 48 and can engage therein to block the gear-shift lever 2. An embodiment is especially effective in which, when the Park P position is present and the actuator 44 has not been actuated, the blocking element 37 engages in its assigned gate section 39 to block the gear-shift lever 2 in this Park P position. The two gate sections 39, 48 are arranged opposite each other in the blocking gate 38. As a result, when the Neutral N position is present, the blocking element 37 engages in its assigned gate section 48 only when the actuator 44 is actuated and only then blocks the gear-shift lever 2 in this Neutral N position.
The blocking of the gear-shift lever 2 in the Park P position or in the Neutral N position is frequently also called the “shift lock”. It is clear that the shifting device 1 can be connected suitably to an ignition lock to allow the removal of the ignition key from the ignition lock only when the gear-shift lever 2 is in the Park P position and blocked by the blocking mechanism 36, i.e., the so-called “key lock”.
The shifting device 1 is also equipped with a latching mechanism 49, which can be seen especially clearly in
The latching element 50 in question is arranged in a guide 56 so that is free to move up and down. Said guide 56 is open toward the associated latching gate 51, so that the latching element 50 in question can project out of the guide 56 under the force of a spring and engage in the latching gate 51. An appropriate compression spring inside the guide 56 can be supported on the latching element 50.
In the example, the latching elements 50 are arranged on the gear-shift lever 2, namely, in particular together with their associated guides 56. For this purpose, the gear-shift lever 2 is equipped here with a mounting bracket 47, by which the gear-shift lever 2 is supported pivotably around the pivot axis 35. This pivot axis 35 extends transversely to the direction of movement of the gear-shift lever 2 in the automatic shift track 6 and can thus be referred to in the following as the “transverse axis” 35. The latching elements 50 are arranged here together with the guides 56 on this mounting bracket 47. In contrast, the latching gates 51 are formed on the housing 12 or on the shift block or selector block 10.
As shown in
Each latching gate 51 has transition sections 58 between the gate sections 52-55 assigned to the individual gear-shift positions 9; these transition sections are in the form of “hills” on the side facing the latching element 50, whereas the gate sections 52-55 adjacent thereto are in the form of “valleys”. The latching gate 51 is adapted to its associated latching element 50 in such a way that the transition areas 58 form unstable transition points, from which the active spring forces automatically drive the gear-shift lever 2 into the one or the other adjacent stable latching position, each of which corresponds to one of the gear-shift positions 9. As a result, the gear-shift lever 2 can be actuated in a highly convenient manner to select the various gear-shift positions 9 of the automatic shift track 6.
The latching gate 51 in question, furthermore, can be designed in such a way and can cooperate with its associated latching element 50 in such a way that the Middle M position in the manual shift track 7 is a self-centering, stable gear-shift position. The gate section 55, which forms a stable latching position for the Drive D position, is also assigned to the middle M position. Accordingly the Middle M position, too, is self-centering and stable.
The latching element 50 has here a roller element 59, which is in contact with the contour of the associated latching gate 51. The rolling element 59 has comparatively low resistance, which makes it easy to shift, i.e., to actuate the gear-shift lever 2, even at high retaining forces.
As shown in
According to
This special design brings about a significant change in the force acting on the gear-shift lever 2 when this lever reaches the upshift position + or the downshift position −. For, once the unstable transition point 58 or 62 is passed, the direction in which the spring force of the latching mechanism 49 acts reverses. This means in turn that the force which the driver must exert to drive the gear-shift lever 2 into the upshift position + or into the downshift position − decreases significantly as soon as the position in question is reached or immediately before the position in question is reached.
In accordance with an especially advantageous embodiment, the centering mechanism 60 can now be adapted to the latching mechanism 49 in such a way that the restoring force of the centering mechanism 60 in the upshift position + and in the downshift position − is greater in each case than the spring force of the latching mechanism 49 acting in the opposite direction in the assigned gear-shift lever position 61. As a result of this design, the restoring force of the centering mechanism 60 can automatically bring the gear-shift lever 2 out of the upshift position + or the downshift position − into which it is pretensioned by the spring force of the latching mechanism 49 back into the Middle M position.
At least in
The rod guide 64 and/or the pushrod 63 comprises end-position dampers 68. When the gear-shift lever 2 travels into the upshift position + and into the downshift position −, the end-position dampers 68 damp the arrival in the end position in question. For example, the pushrod 63 can be designed as a hollow body, which is suitable for accommodating the restoring springs 65. Support points, on which the restoring springs 65 can be supported on the rod guide 64, are formed on the housing 12 or on the selector block 10. They cannot be seen in the diagrams given here, however. These support points project into an open side of the push rod 63. Corresponding openings can be seen in
The shifting device 1 is also equipped with an actuating slide 70, which is provided for the operation of the actuating cable 11. For this purpose, the actuating cable 11 can be connected suitably to the actuating slide 70. The actuating slide 70 is also equipped with a driver receptacle 71, which is clearly visible in
In the Drive D position, the actuating slide 70 is positioned in its longitudinal guide 72 in such a way that its driver receptacle 71 is aligned with the driver receptacle 66 of the pushrod 63. When the gear-shift lever 2 is moved in the transverse track 8, the driver 67 therefore changes over from one of the two driver receptacles 66, 71 to the other. The shifting device 1 is also equipped with a locking element 73, which, when the driver 67 moves out of the driver receptacle 71 of the actuating slide 70, engages positively in a recess 74, which is formed in the actuating slide 70. The locking element 73 engaged in the recess 74 prevents the actuating slide 70 from being moved along the longitudinal guide 72. When the driver 67 is moved into the driver receptacle 71 of the actuating slide 70, the locking element 73 is pulled back out of the recess 74. This can be realized by means of, for example, an actuating element 75, which is connected to the locking element 73 and which is actuated or displaced by the driver 67 when the driver engages in the driver receptacle 71 of the actuating slide 70. So that the locking element 73 engages in the recess 74 when the driver 67 travels out of driver receptacle 71 of the actuating slide 70, a compression spring 76 can also be provided, which pretensions the locking element 73 in the direction toward the actuating slide 70.
While preferred embodiments of the invention have been described herein, it will be understood that such embodiments are provided by way of example only. Numerous variations, changes and substitutions will occur to those skilled in the art without departing from the spirit of the invention. It is intended that the appended claims cover all such variations as fall within the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 022 551.7 | Apr 2008 | DE | national |