During well completion, it is common to introduce a cement composition into an annulus in a wellbore. For example, in a cased-hole wellbore, a cement composition can be placed into and allowed to set in the annulus between the wellbore and the casing in order to stabilize and secure the casing in the wellbore. By cementing the casing in the wellbore, fluids are prevented from flowing into the annulus. Consequently, oil or gas can be produced in a controlled manner by directing the flow of oil or gas through the casing and into the wellhead. Cement compositions can also be used in primary or secondary cementing operations, well-plugging, or squeeze cementing.
Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the drawings and descriptions that follow, like parts are typically marked throughout the specification and drawings with the same reference numerals, respectively. The drawn figures are not necessarily to scale. Certain features of the disclosure may be shown exaggerated in scale or in somewhat schematic form and some details of certain elements may not be shown in the interest of clarity and conciseness. The present disclosure may be implemented in embodiments of different forms.
Specific embodiments are described in detail and are shown in the drawings, with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. It is to be fully recognized that the different teachings of the embodiments discussed herein may be employed separately or in any suitable combination to produce desired results.
Unless otherwise specified, use of the terms “connect,” “engage,” “couple,” “attach,” or any other like term describing an interaction between elements is not meant to limit the interaction to direct interaction between the elements and may also include indirect interaction between the elements described.
Unless otherwise specified, use of the terms “up,” “upper,” “upward,” “uphole,” “upstream,” or other like terms shall be construed as generally away from the bottom, terminal end of a well, regardless of the wellbore orientation.; likewise, use of the terms “down,” “lower,” “downward,” “downhole,” or other like terms shall be construed as generally toward the bottom, terminal end of a well, regardless of the wellbore orientation. Use of any one or more of the foregoing terms shall not be construed as denoting positions along a perfectly vertical axis. Unless otherwise specified, use of the term “subterranean formation” shall be construed as encompassing both areas below exposed earth and areas below earth covered by water such as ocean or fresh water.
The present disclosure recognizes that traditional cement operations have inherent drawbacks. The present disclosure further recognizes that reverse cementing operations were developed to overcome some of the disadvantages to traditional cement operations. For example, in traditional cementing operations, the setting time of the cement composition is longer in order for the cement slurry to travel through the casing or an inner tubing string and back up into the annulus before setting. Additionally, the amount of cement slurry that is pumped is generally greater than in reverse cementing. In reverse cementing, the cement slurry is pumped directly into the annulus instead of into the annulus via the casing string or tubing string. Accordingly, reverse cementing generally requires less of the cement slurry, faster setting times, and lower pump pressures because gravity assists the cement slurry in being placed in the annulus.
To perform reverse cementing operations successfully, the ability of holding displaced cement in place has proven to be difficult. One method of reverse cementing employs an inner tubing or drill string to prop open a check valve for the duration of reverse cementing. Once completed, retracting the tubing or drill string from the check valve allows it to close and check the further flow of cement into the casing string. The use of an inner tubing is expensive, requiring extra equipment, time, and personnel to complete the job. Thus, there is a need for improved ways to perform a reverse cementing operation that requires less time, money, and personnel.
The present disclosure, based at least in part upon the above recognitions, has developed an improved inner sleeve, downhole tool, and a method for cementing in a wellbore. The inner sleeve, in at least one embodiment, may include a tubular having an uphole end, a downhole end, an inside tubular surface and an outside tubular surface. The inner sleeve, according to this embodiment, may further include two or more plug seat openings circumferentially positioned about the tubular and extending from the outside tubular surface to the inside tubular surface, the two or more plug seat openings configured to engage with two or more associated plug seats and allow the two or more associated plug seats to move between a radially retracted state and a radially extended state.
The downhole tool, in at least one embodiment, may include a valve connector housing, and an inner sleeve located at least partially within the valve connector housing. The inner sleeve, in at least one embodiment, may include a tubular having an uphole end, a downhole end, an inside tubular surface and an outside tubular surface, two or more plug seat openings circumferentially positioned about the tubular and extending from the outside tubular surface to the inside tubular surface, and two or more associated plug seats engaged with the two or more plug seat openings, the two or more associated plug seats configured to move between a radially retracted state and a radially extended state as the inner sleeve slides within the valve connector housing.
The method, in at least one embodiment, may include obtaining a casing string and a downhole tool installed therein, wherein the downhole tool includes: a body coupled to the casing string, a valve connector housing located within the body, an inner sleeve located at least partially within the valve connector housing. The inner sleeve, in at least one embodiment, may include a tubular having an uphole end, a downhole end, an inside tubular surface and an outside tubular surface, two or more plug seat openings circumferentially positioned about the tubular and extending from the outside tubular surface to the inside tubular surface, two or more associated plug seats engaged with the two or more plug seat openings, the two or more associated plug seats held in radially retracted states via the valve connector housing, a first valve located within the body and configured to open and close a fluid flow path through the valve connector housing, wherein the first valve is in a first valve open position, and a second valve located within the body and configured to open and close the fluid flow path through the valve connector housing, wherein the second valve is in a second valve closed position. The method may further include introducing the casing string and the downhole tool into a wellbore.
Turning to the figures,
The downhole tool 118 can include an inner sleeve 125 and a valve connector housing 192. The inner sleeve 125 can be releasably attached to the valve connector housing 192 by a frangible device 180. The frangible device 180 can be any device that is capable of withstanding a predetermined amount of force and capable of releasing at a force above the predetermined amount of force. The frangible device 180 can be, for example, a shear pin, a shear screw, a shear ring, a load ring, a lock ring, a pin, or a lug. There can also be more than one frangible device 180 that connects the inner sleeve 125 to the valve connector housing 192. The frangible device 180 or multiple frangible devices can be selected based on the force rating of the device, the total number of devices used, and the predetermined amount of force needed to release the device. For example, if the total force required to break or shear the frangible device is 15,000 pounds force (lbf) and each frangible device has a rating of 5,000 lbf, then a total of three frangible devices may be used.
The downhole tool 118 may also include a first valve 150 and a second valve 155. The first and second valves 150/155 can be flapper valves. As shown in
The methods can include causing the inner sleeve 125 to shift after introduction and placement of the casing string 115 and the downhole tool 118 into the wellbore. The downhole tool 118 can include two or more plug seats 190 that are located on the inner sleeve 125 above the second valve 155. After the downhole tool 118 has been placed at the desired location within the wellbore, a plug 185 can be introduced into the casing string 115 and be flowed through the inner sleeve 125 of the downhole tool 118. It is to be understood that reference to a “plug” is not meant to limit the geometric shape of the plug, but rather is meant to include any device that is capable of engaging with a seat. In at least one embodiment, the plug 185 is a ball, but in other embodiments the plug 185 could be a dart, a bar, or any other shape.
Shifting of the inner sleeve 125 can be accomplished via the two or more plug seats 190 and the plug 185, for example by dropping the plug 185 from the wellhead onto the two or more plug seats 190 that are located within the downhole tool 118. The plug 185 engages with the two or more plug seats 190, and the seal created by this engagement prevents fluid communication downstream of the plug 185 and two or more plug seats 190. A pressure differential is created after the seal is created by engagement of the plug 185 with the two or more plug seats 190. The pressure differential can cause the frangible device 180 to shear, thereby releasing the inner sleeve 125 from connection with the valve connector housing 192.
Turning now to
The inner sleeve 125 can continue to travel in a downward direction until a sleeve shoulder 135 shoulders up against a valve connector housing shoulder 195. Continued travel of the inner sleeve 125 is prevented after the sleeve shoulder 135 engages with the valve connector housing shoulder 195. The inner sleeve 125 and the valve connector housing 192 can also include a lock ring 140. The lock ring 140 can become locked as shown in
As can also be seen in
The plug 185, the two or more plug seats 190, and/or the inner sleeve 125 can be configured to allow the plug 185 to disengage from the two or more plug seats 190. Thus, the methods can further include causing or allowing the plug 185 to disengage from the two or more plug seats 190, for example after the inner sleeve 125 has shouldered up, as shown in
The components of the downhole tool 118 can be made from a variety of components including, but not limited to, metals, metal alloys, composites, plastics, and rubbers.
The methods further include introducing a cement composition 110 into an annulus located between a wall 105 of the wellbore and an outside of the casing string 115. The annulus and inside of the casing string 115 can contain a fluid. The fluid can be a run-in-hole fluid, for example, a drilling mud. The methods can include introducing a first fluid into the annulus prior to introduction of the cement composition 110. The first fluid can be a spacer fluid. A spacer fluid can help separate a drilling mud from the cement composition 110. The cement composition 110 can then be introduced into the annulus. There can also be a second, third, etc. fluid introduced into the annulus after the first fluid and before the cement composition 110. Any of the fluids can be introduced into the annulus in the direction D3 and can enter the downhole tool 118 in the direction D4. The first valve 150 can open as fluids enter the inner sleeve 125 from direction D4. With the cement composition 110 in place, it may be allowed to set to fix the casing string 115 and body 120 within the wellbore.
Turning to
In one or more embodiments, the two or more plug seat openings 320 are two or more T-shaped plug seat openings, such as shown in
In one or more embodiments, the two or more plug seats 330 are two or more T-shaped plug seats, such as shown in
Any number of plug seat openings 320 and associated plug seats 330 may be used and remain within the scope of the disclosure, so long as there are at least two of each. In at least one embodiment, three plug seat openings 320 and associated plug seats 330 are used. In yet another embodiment, such as shown in
In the illustrated embodiment, the inner sleeve 300 may additionally include a lock ring groove 340 in the outside tubular surface 315d. The inner sleeve 300 may additionally include a lock ring 345 positioned within the lock ring groove 340. In at least one embodiment, the lock ring groove 340 and lock ring 345 are positioned between the two or more plug seat openings 320 and the downhole end 315b of the tubular 310. Accordingly, the lock ring groove 340 and the lock ring 345 may be used to prevent the inner sleeve 300 from travelling back uphole (e.g., toward the first valve) after the plug seats 330 have moved from radially retracted state (e.g., as shown in
In the illustrated embodiment, the inner sleeve 300 may additionally include one or more seal grooves 350 in the outside tubular surface 315d. The inner sleeve 300 may additionally include one or more seals 355 positioned within the one or more seal grooves 350. In at least one embodiment, the one or more seal groove 350 and one or more seals 355 are positioned between the two or more plug seat openings 320 and the uphole end 315a of the tubular 310, and are configured to prevent fluid from entering the spacing between the inner sleeve 300 and the valve connector housing.
In one or more embodiments, the inner sleeve 300 may additionally include a fluid release port/slot 360. This fluid release port/slot 360 may allow any fluid trapped between the inner sleeve 215 and the valve connector housing to escape when/if the inner sleeve 300 is moving from the radially retracted state (e.g., as shown in
Turning to
The downhole tool 400 according to the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
Aspects disclosed herein include:
Aspects A, B, and C may have one or more of the following additional elements in combination: Element 1: wherein the two or more plug seat openings are two or more T-shaped plug seat openings. Element 2: wherein the two or more T-shaped plug seat openings each include a vertical portion and a horizontal portion. Element 3: wherein a downhole sidewall of the vertical portion is angled downhole. Element 4: further including two or more associated T-shaped plug seats engaged within the two or more T-shaped plug seat openings, the two or more T-shaped plug seat openings allowing the two or more associated T-shaped plug seats to move between the radially retracted state and the radially extended state. Element 5: wherein the two or more associated T-shaped plug seats each include a vertical plug seat portion and a horizontal plug seat portion, and further wherein a second downhole sidewall of the vertical plug seat portion is angled downhole. Element 6: wherein the two or more T-shaped plug seat openings each include a vertical portion and a horizontal portion, and further including two or more associated T-shaped plug seats engaged within the two or more T-shaped plug seat openings, the two or more associated T-shaped plug seats each including a vertical plug seat portion and a horizontal plug seat portion, and further wherein the vertical plug seat portion has a radius of curvature. Element 7: further including four or more plug seat openings circumferentially positioned about the tubular and extending from the outside tubular surface to the inside tubular surface. Element 8: further including a lock ring located within a lock ring groove in the outside tubular surface, the lock ring and lock ring grove located between the two or more plug seat openings and the downhole end of the tubular. Element 9: further including one or more seals located within one or more seal grooves in the outside tubular surface, the one or more seals and one or more seal grooves located between the two or more plug seat openings and the uphole end of the tubular. Element 10: further including: a body coupled to the valve connector housing and configured to fit within a casing string; a first valve located within the body and configured to open and close a fluid flow path through the valve connector housing, wherein the first valve opens to a first valve open position in a direction towards a wellhead of the wellbore; and a second valve located within the body and configured to open and close the fluid flow path through the valve connector housing, wherein the second valve opens to a second valve open position in a direction away from the wellhead of the wellbore. Element 11: wherein the first valve is configured to be in the first valve open position and the second valve is configured to be in a second valve closed position during placement of the downhole tool in the wellbore. Element 12: wherein the body includes one or more plug seat spaces, the one or more plug seat spaces configured to allow the two or more associated plug seats to move from the radially retracted state to the radially extended state as the inner sleeve slides within the valve connector housing. Element 13: wherein the two or more plug seat openings are two or more T-shaped plug seat openings. Element 14: wherein the two or more associated plug seats are two or more associated T-shaped plug seats, and further wherein the two or more associated T-shaped plug seats each include a vertical plug seat portion and a horizontal plug seat portion, and further wherein a second downhole sidewall of the vertical plug seat portion is angled downhole. Element 15: further including introducing cement composition into an annulus located between a wall of the wellbore and an outside of the casing string after introducing the casing string and the downhole tool into the wellbore. Element 16: wherein the two or more associated plug seats held in the radially retracted state extend radially inward from the inside tubular surface, and further including introducing a plug into the casing string and the inner sleeve, wherein the plug engages with the two or more plug seats to create a seal and a pressure differential, and wherein the pressure differential causes the inner sleeve to shift downhole. Element 17: wherein the shift downhole moves the first valve to a first valve closed position and the second valve to a second valve open position. Element 18: wherein the shift downhole allows the two or more associated plug seats to encounter one or more plug seat spaces in the body and move from the radially retracted state to the radially extended state. Element 19: wherein the pressure differential against the plug moves the two or more associated plug seats from the radially retracted state to the radially extended state when they encounter the one or more plug seat spaces in the body. Element 20: wherein the move of the two or more associated plug seats from the radially retracted state to the radially extended state allows the plug to disengage from the two or more associated plug seats and leave the downhole tool. Element 21: wherein the two or more plug seat openings are two or more T-shaped plug seat openings. Element 21: wherein the two or more T-shaped plug seat openings each include a vertical portion and a horizontal portion. Element 22: wherein a downhole sidewall of the vertical portion is angled downhole. Element 23: wherein the two or more associated plug seats are two or more associated T-shaped plug seats, and further wherein the two or more associated T-shaped plug seats each include a vertical plug seat portion and a horizontal plug seat portion, and further wherein a second downhole sidewall of the vertical plug seat portion is angled downhole.
Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions, and modifications may be made to the described embodiments.