The present disclosure relates generally to a shin guard with an outwardly facing feature for restricting motion of the guard relative to a wearer's clothing.
Protective padding, such as a shin guard, is commonly used in sporting to limit potential impact forces that may be experienced by an athlete. Such protective padding is intended to dissipate and attenuate any received impact forces as well as to resist a puncture or impalement.
Traditionally, shin guards are used by an athlete to protect the shin region of the athlete against any external impacts. Shin guards, in an as-worn position, generally extend from below the knee to a location superior of the ankle, and cover a portion of the wearer's tibia. The general size and shape of the protective portion of the shin guard, however, may vary by design.
During use, the wearer of the shin guard may place the shin guard against their shin and under a sock to secure the shin guard into a position. Additionally or alternatively, the shin guard may be used with one or more straps or sleeves to help secure the shin guard when worn. However, these methods of securing the shin guard may still allow the shin guard to shift or otherwise move out of position relative to a wearer's leg.
A shin guard that maintains it's positioning relative to an overlaid textile, such as a sock, includes a protective shell having a convex outer surface and a concave inner surface, a cushioning element abutting the inner surface, and a polymeric texture provided on the outer surface. The polymeric texture includes a plurality of protrusions that each extend from the outer surface by a maximum distance of from about 1 mm to about 5 mm and that each have a hardness measured on the Shore A scale of from about 20 A to about 60 A.
In some embodiments, the polymeric texture may include a carrier layer. To facilitate manufacturing of the guard, each of the plurality of protrusions may be molded onto the carrier layer, and the carrier layer may then be adhered to the protective shell. In embodiments where the carrier material comprises a thin polymeric film or woven fabric, the plurality of protrusions may each extend from either the outer surface of the shell, or from the carrier layer by the maximum distance of from about 1 mm to about 5 mm. In some embodiments, the carrier layer may be a lattice structure that includes a plurality of connecting members, each extending between two adjacent protrusions.
In some embodiments, each of the plurality of protrusions may have a shape that is conical or pyramidal, and may further be spherically blunted to promote safety. Furthermore, in some embodiments, the protective shell may include a central region and a peripheral region that surrounds the central region. The area of the central region may be greater than about 50% of the area of the peripheral region, and the plurality of protrusions extend from the peripheral region.
Furthermore, in some embodiments, the plurality of protrusions may be a first plurality of protrusions, and may each have a generally common height. The polymeric texture may then include a second plurality of protrusions that have lesser heights and that provide a visual gradient effect. The second plurality of protrusions may exhibit less of a textile holding effect than the first plurality of protrusions. Likewise, the second plurality of protrusions may have a greater average spacing between adjacent protrusions than the average spacing of the first plurality of protrusions.
It is an aspect of the present design to provide a shin guard that minimizes the need for ancillary holding means (e.g., straps, sleeves, or athletic tape) to maintain the proper positioning of the guard. In an ideal configuration, the present guard may be placed between a user's skin and a surrounding sock, and may maintain position solely based on the holding strength and elasticity of the sock. In less ideal configurations, ancillary holding means may still be used, though sole reliance on them to ensure proper positioning may be diminished.
In an aspect of the present design, a texture provided on the outward-facing surface of a protective pad/guard may inhibit motion of an overlaid textile relative to the pad/guard. Such a design may be generally applicable to any personal protective padding that may be positioned under a wearer's outer clothing.
It is a further aspect of the present design to provide for the safety of the wearer and for others that may contact the protective pad/guard by designing the texture with sufficient compliance to not separately enhance a risk of injury.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Referring to the drawings, wherein like reference numerals are used to identify like or identical components in the various views,
In general, the protective shell 12 has a top/superior edge 20, a bottom/inferior edge 22, a lateral edge 24, and a medial edge 26 opposite the lateral edge 24 (not visible as depicted). As better shown in the exploded perspective view of
The protective shell 12, is formed from a rigid or semi-rigid material that is effective to distribute an impact force across an area of the protective apparatus. Furthermore, the shell 12 should be formed from a material that is functional to resist a puncture force exerted by an object, such as an opposing athlete's shoe cleat(s). Suitable materials for manufacturing the shell 12 include, but are not limited to, polymers (e.g., ionomer resins, polypropylene, woven polypropylene, polyethylene, polystyrene, polyester, polycarbonate, polyamide, and the like), carbon fiber composites, metals (e.g., aluminum, titanium), natural materials (e.g., bamboo), and other materials.
As further illustrated in
In the embodiment illustrated in
In the embodiment illustrated in
As shown in
Referring again to
As the respective protrusions 16 are likely made of a different material and have different material properties than the protective shell 12, manufacturing the guard may pose certain challenges. In a first embodiment, the texture 14 and/or protrusions 16 may be co-molded with the protective shell 12. In another embodiment, the texture 14 and/or protrusions 16 may be 3D printed directly onto the protective shell 12. In either case, to permit mold release and/or accurate 3D printing, the texture 14 may be fused to the shell 12 prior to the shell 12 being formed into its convex shape (such as shown in
While direct affixment to the shell 12 may be a viable manufacturing method, accurately shaping the shell 12 with the affixed texture may present certain challenges. As such, in another embodiment, such as shown in
In yet another embodiment, such as shown in
To establish adequate grip relative to an overlaid textile, such as a sock, it is preferable for the polymeric texture 14 to include at least 20 protrusions, and more preferably to include more than 50 protrusions. Likewise, it has been found that placement of the protrusions 16 close to an outer perimeter of the shell 12 provides the most robust means of inhibiting motion of an overlaid textile relative to the guard 10. For example, as illustrated in
In some embodiments, such as generally shown in
In some configurations, the polymeric texture 14 may include a first plurality of protrusions 90 that each extend from the outer surface by a common first maximum distance and/or have a common first average spacing 86 (generally illustrated in
While the outside-in protrusion gradients illustrated in
While the present disclosure is made specifically with respect to shin guards, it is contemplated that the functional texture 14 may be useful with other protective pads to limit the motion of an outer garment/textile relative to the pad. For example, this texture 14 may be similarly applied to an external surface of American-Football shoulder pads, chest protectors, thigh protectors, or any other similar padding that is conventionally worn under the user's clothing.
“A,” “an,” “the,” “at least one,” and “one or more” are used interchangeably to indicate that at least one of the item is present; a plurality of such items may be present unless the context clearly indicates otherwise. All numerical values of parameters (e.g., of quantities or conditions) in this specification, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; about or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters. In addition, disclosure of ranges includes disclosure of all values and further divided ranges within the entire range. Each value within a range and the endpoints of a range are hereby all disclosed as separate embodiment. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated items, but do not preclude the presence of other items. As used in this specification, the term “or” includes any and all combinations of one or more of the listed items. When the terms first, second, third, etc. are used to differentiate various items from each other, these designations are merely for convenience and do not limit the items.
The present application is a continuation of U.S. patent application Ser. No. 15/605,068, issued as U.S. Pat. No. 10,463,945, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3465364 | Edelson | Sep 1969 | A |
10463945 | Blunt | Nov 2019 | B2 |
20110113559 | Dodd | May 2011 | A1 |
20110239348 | Sandusky | Oct 2011 | A1 |
20110252548 | Weiss | Oct 2011 | A1 |
20130232674 | Behrend | Sep 2013 | A1 |
20130234376 | Frey | Sep 2013 | A1 |
20140259325 | Behrend et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
102316756 | Jan 2012 | CN |
102395286 | Mar 2012 | CN |
105188432 | Dec 2015 | CN |
105188433 | Dec 2015 | CN |
105579005 | May 2016 | CN |
202007009262 | Sep 2007 | DE |
1369149 | Dec 2003 | EP |
3031037 | Jul 2016 | FR |
Number | Date | Country | |
---|---|---|---|
20200061441 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15605068 | May 2017 | US |
Child | 16671947 | US |