Shingle blank having formation of individual hip and ridge roofing shingles

Information

  • Patent Grant
  • 9017791
  • Patent Number
    9,017,791
  • Date Filed
    Thursday, March 3, 2011
    13 years ago
  • Date Issued
    Tuesday, April 28, 2015
    9 years ago
Abstract
A shingle blank comprises an asphalt coated mat having a cut line formed in the asphalt coated mat. The cut line includes a continuous cut portion and a perforated portion. The perforated portion is structured and configured to facilitate separation of the shingle blank into discrete portions.
Description
BACKGROUND

Asphalt-based roofing materials, such as roofing shingles, roll roofing and commercial roofing, are installed on the roofs of buildings to provide protection from the elements. The roofing material may be constructed of a substrate such as a glass fiber mat or an organic felt, an asphalt coating on the substrate, and a surface layer of granules embedded in the asphalt coating.


Roofing materials are applied to roofs having various surfaces formed by roofing planes. The various surfaces and roofing planes form intersections, such as for example, hips and ridges. A ridge is the uppermost horizontal intersection of two sloping roof planes. Hips are formed by the intersection of two sloping roof planes running from a ridge to the eaves.


The above notwithstanding, there remains a need in the art for improved hip and ridge roofing material and an improved method of manufacturing hip and ridge roofing material.


SUMMARY OF THE INVENTION

The present application describes various embodiments of a shingle blank from which hip and ridge shingle material is formed. In one embodiment, the shingle blank includes an asphalt coated mat having a cut line formed in the asphalt coated mat. The cut line includes a continuous cut portion and a perforated portion. The perforated portion is structured and configured to facilitate separation of the shingle blank into discrete portions.


In another embodiment, a shingle blank includes a first shingle blank layer defining a longitudinally extending prime region and a longitudinally extending headlap region. At least the prime region includes a second longitudinally extending layer bonded to the first shingle blank layer. A cut line is formed in the shingle blank and includes a continuous cut portion formed in the prime region and a perforated portion. The perforated portion is structured and configured to facilitate separation of the shingle blank into discrete portions.


In another embodiment, a method of forming a shingle blank includes forming a cut line in an asphalt coated mat to define a cut shingle blank. The cut line includes a continuous cut portion and a perforated portion. The perforated portion is structured and configured to facilitate separation of the shingle blank into discrete portions.


Other advantages of the shingle blank will become apparent to those skilled in the art from the following detailed description, when read in light of the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a building structure incorporating the hip and ridge roofing material according to the invention.



FIG. 2 is a perspective view of the installation of the hip and ridge roofing material illustrated in FIG. 1.



FIG. 3 is a perspective view of a first embodiment of a shingle blank used for making the hip and ridge roofing material illustrated in FIG. 2.



FIG. 4A is a perspective view of the shingle blank illustrated in FIG. 3 showing the formation of the individual hip and ridge roofing material illustrated in FIG. 2.



FIG. 4B is a perspective view of the individual hip and ridge roofing material illustrated in FIG. 4A.



FIG. 5 is an enlarged cross-sectional view taken along the line 5-5 of FIG. 4A of a portion of a first embodiment of the cut shingle blank, and showing a portion of the knife blade.



FIG. 6 is an enlarged cross-sectional view of a portion of a second embodiment of the cut shingle blank and a portion of the associated knife blade.



FIG. 7 is an enlarged cross-sectional view of a portion of a third embodiment of the cut shingle blank and a portion of the associated knife blade.



FIG. 8 is an enlarged cross-sectional view of a portion of a fourth embodiment of the cut shingle blank and a portion of the associated knife blade.



FIG. 9 is an enlarged cross-sectional view of a portion of a fifth embodiment of the cut shingle blank and a portion of the associated knife blade.



FIG. 10 is a schematic view in elevation of apparatus for manufacturing an asphalt-based roofing material according to the invention.





DETAILED DESCRIPTION

The present invention will now be described with occasional reference to the illustrated embodiments of the invention. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein, nor in any order of preference. Rather, these embodiments are provided so that this disclosure will be more thorough, and will convey the scope of the invention to those skilled in the art.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth as used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, the numerical properties set forth in the specification and claims are approximations that may vary depending on the desired properties sought to be obtained in embodiments of the present invention. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from error found in their respective measurements.


In accordance with embodiments of the present invention, a hip and ridge shingle, and methods to manufacture the hip and ridge shingle, are provided. As used in the description of the invention and the appended claims, the term “ridge” refers to the intersection of the uppermost sloping roof planes. The term “roof plane” is defined as a plane defined by a flat portion of the roof formed by an area of roof deck. The term “hip” is defined as the intersection of sloping roof planes located below the ridge. The term “slope” is defined as the degree of incline of a roof plane. The term “granule” is defined as particles that are applied to a shingle that is installed on a roof.


The description and figures disclose a hip and ridge roofing material for a roofing system and methods of manufacturing the hip and ridge roofing material. Referring now to FIG. 1, a building structure 10 is shown having a shingle-based roofing system 12. While the building structure 10 illustrated in FIG. 1 is a residential home, it will be understood that the building structure 10 may be any type of structure, such as a garage, church, arena, industrial or commercial building, having a shingle-based roofing system 12.


The building structure 10 has a plurality of roof planes 14a through 14d. Each of the roof planes 14a through 14d may have a slope. While the roof planes 14a through 14d shown in FIG. 1 are illustrated as having one respective illustrated slope, it will be understood that the roof planes 14a through 14d may have any suitable slope. The intersection of the roof planes 14b and 14c form a hip 16. Similarly, the intersection of the roof planes 14b and 14d form a ridge 18. The building structure 10 is covered by the roofing system 12 having a plurality of shingles 20.


Referring now to FIG. 2, the shingles 20 are installed on the various roof decks in generally horizontal courses 22a through 22g in which the shingles 20 overlap the shingles 20 of a preceding course. The shingles 20 shown in FIGS. 1 and 2 may be any suitable shingle.


Hip and ridge roofing materials, also known as hip and ridge caps, cap shingles, or discrete portions when separated from the shingle blank, described below, are installed to protect hips and ridges from the elements. As shown in FIG. 2, hip and ridge roofing materials 24 are installed in an overlapping manner on the ridge 18 and over the shingles 20. In a similar fashion, hip roofing materials (not shown) are installed on a hip, such as the hip 16, and over the shingles 20. The method of installing the hip and ridge roofing materials 24 will be discussed in more detail below.


The peak or ridge 18 of the building structure 10 may include an opening covered by a ridge vent that allows air to pass out of the structure 10, but prevents insects and moisture from entering the structure 10. It will be understood that the hip and ridge roofing materials 24 described herein may be installed over a ridge vent if desired.


Hip and ridge roofing materials may be made from shingle blanks, such as shown at 26 in FIG. 3. In the illustrated embodiment, the shingle blank 26 includes a headlap region 28 and a prime region 30. The prime region 30 has a first or prime longitudinal edge 30E and the headlap region 28 has a second or headlap longitudinal edge 28E. The headlap region 28 of the shingle blank 26 is the portion of the hip and ridge roofing material that will be covered by successive overlapping hip and ridge roofing material when the hip and ridge roofing materials are installed. The prime region 30 of the shingle blank 26 is the portion of the hip and ridge roofing material that remains exposed when the hip and ridge roofing materials are installed on a roof. In other embodiments, the shingle blank may include only a prime region and no headlap region.


Referring again to FIG. 3, the shingle blank 26 may have any desired dimensions. The shingle blank 26 may also be divided between the headlap region 28 and the prime region 30 in any suitable proportion. For example, a typical residential roofing shingle blank 26 has a length L of approximately 36 inches (91.5 cm) and a height H of approximately 12 inches (30.5 cm) high, with the height H dimension being divided between the headlap region 28 and the prime region 30.



FIG. 3 illustrates one embodiment of the composition of the shingle blank 26 according to the invention. In the illustrated embodiment, the shingle blank 26 has the same composition and the same storm proof properties as the shingles disclosed in U.S. Pat. No. 6,709,994 to Miller et al. U.S. Pat. No. 6,709,994 to Miller et al. is commonly assigned and is incorporated herein by reference in its entirety. In another embodiment, the shingle blank 26 may have other suitable compositions. Alternatively, the shingle blank may be any desired shingle blank, such as the shingle blanks disclosed in U.S. patent application Ser. No. 12/702,457 filed Feb. 9, 2010 and which is a continuation-in-part of U.S. patent application Ser. No. 12/392,392 filed Feb. 25, 2009. U.S. patent application Ser. No. 12/702,457 is commonly assigned and is incorporated herein by reference in its entirety. The illustrated shingle blank 26 includes an asphalt-coated mat or substrate 44 having a layer of granules 42 to define a granule-coated mat 50. If desired, a web 56 may be bonded to a lower section 51 of the granule-coated mat 50 to provide resistance to a variety of impacts, as disclosed in U.S. Pat. No. 6,709,994.


Referring now to the embodiment shown in FIGS. 4A and 4B, a first embodiment of a cut shingle blank is illustrated at 58. The cut shingle blank 58 includes a plurality of cut lines 60. The illustrated cut lines 60 are spaced apart substantially perpendicular to the length L of the cut shingle blank 58 and extend across the headlap region 28 and the prime region 30. The cut lines 60 are positioned such that subsequent separation of the cut shingle blank 58 along the cut lines 60 forms ridge roofing material 24. The cut lines 60 include a perforated portion 62 and a continuous cut portion 64. The perforated portions 62 of the cut lines 60 include perforations 66.


In the embodiment illustrated in FIGS. 4A, 4B, and 5, the perforations 66 extend through the headlap region 28. The continuous cut portions 64 extend through the prime region 30 and the web 56. As used herein, the term “continuous cut” is defined as a portion of the cut line wherein the cut extends through the entire thickness of all layers of a shingle blank for the length of the continuous cut portion.


The perforations 66 may be arranged in any suitable pattern to form the perforated portion 62 of the cut line 60. In one embodiment of a perforation pattern, the perforations 66 may be about 0.25 inches long and spaced apart from edge to edge by about 0.25 inches. In another embodiment of a perforation pattern, the perforations 66 may be about 0.50 inches long and spaced apart from edge to edge about 0.50 inches. Alternatively, the perforations may be any desired length and may be spaced apart edge to edge by any desired length. The perforations 66 may be configured such that an installer is able to separate the cut shingle blanks 58 into the hip and ridge roofing material 24 at the installation site. In the illustrated embodiment, the perforated portion 62 of the cut line 60 extends the full height HH of the headlap region 28 and the continuous cut portion 64 of the cut line 60 extends the full height HP of the prime region 30. Alternatively, the perforated portion 62 and the continuous cut portion 64 may extend any length sufficient to enable an installer to separate the cut shingle blanks 58 into the ridge roofing materials 24 at an installation site. While the embodiment shown in FIG. 4A illustrates two cut lines 60, it will be understood that more or less than two cut lines 60 may be formed in the shingle blank 26.


A portion of a first embodiment of a knife blade 109, described in detail below, is shown in FIG. 5, and includes a continuous cutting portion 110 and a toothed portion 112. The knife blade 109 is structured and configured such that the continuous cutting portion 110 and the toothed portion 112 of the knife blade 109 cut completely through the single layer of the shingle blank 26 and through the web 56.


In each of the embodiments illustrated in FIGS. 5 through 9, a knife blade is illustrated in a position spaced apart from the cut shingle blank, and the cut shingle blank is shown after it has been cut by the knife blade. Further, the shingle blanks are shown being cut from a lower surface (opposite the granule-coated surface) toward the granule-coated surface of each shingle blank. It will be understood that the shingle blanks may also be cut from the granule-coated surface toward the lower surface of each shingle blank.


One embodiment of the process and apparatus to manufacture the shingle blank 26 is described in U.S. Pat. No. 6,709,994 to Miller et al., and is only summarized herein. Referring now to FIG. 10, there is shown an apparatus 70 for manufacturing perforated shingle blanks according to the invention. The illustrated manufacturing process involves passing a continuous sheet 72 in a machine direction (indicated by the arrows) through a series of manufacturing operations. In one embodiment, the sheet 72 typically moves at a speed of at least about 200 feet/minute (61 meters/minute) or 300 feet/minute (91 meters/minute), and in another embodiment, typically at a speed within the range of between about 450 feet/minute (137 meters/minute) and about 800 feet/minute (244 meters/minute). Although the invention is shown and described in terms of a continuous process, it will be understood that the invention may also be practiced in a batch process using discreet lengths of materials instead of continuous sheets.


In a first step of the manufacturing process, the continuous sheet 72 of substrate is payed out from a roll 74. The substrate may be any type known for use in reinforcing asphalt-based roofing materials, such as a nonwoven web, scrim, or felt of fibrous materials, such as glass fibers, mineral fibers, cellulose fibers, rag fibers, mixtures of mineral and synthetic fibers, or the like. Combinations of materials may also be used in the substrate. The sheet 72 of substrate is passed from the roll 74 through an accumulator 76. The accumulator 76 allows time for splicing one roll of substrate to another, during which time the substrate within the accumulator 76 is fed to the manufacturing process so that the splicing does not interrupt manufacturing.


Next, the sheet 72 is passed through a coater 78 where an asphalt coating 46 is applied to the sheet 72 to completely cover the sheet 72 with a tacky coating. The asphalt coating 46 may be applied in any suitable manner. In the illustrated embodiment, the sheet 72 contacts a roller 73, that is in contact with a supply of hot, melted asphalt. The roller 73 completely covers the sheet 72 with a tacky coating of hot, melted asphalt to define an asphalt coated sheet 80. In other embodiments, however, the asphalt coating could be sprayed on, rolled on, or applied to the sheet 72 by other means.


As used herein, the term “asphalt coating” is defined as any type of bituminous material suitable for use on a roofing material such as asphalts, tars, pitches, or mixtures thereof. The asphalt may be either manufactured asphalt produced by refining petroleum or naturally occurring asphalt. The asphalt coating 46 may include various additives and/or modifiers, such as inorganic filters, mineral stabilizers, or organic materials, such as polymers, recycled streams, or ground tire rubber.


As further shown in FIG. 10, the asphalt-coated sheet 80 may be passed beneath an applicator 82, where the optional protective coating, such as described in U.S. Pat. No. 6,709,994 to Miller et al., may be applied to portions of the upper surface of the upper section of the asphalt coating 46. The protective coating may be applied to the upper surface of the upper section of the asphalt coating 46 by any suitable method) such as for example by application as a film. The asphalt-coated sheet 80 is then passed beneath a granule dispenser 84 for the application of granules 42. While the embodiment shown in FIG. 10 illustrates a single granule dispenser 84, it will be appreciated than any number of granule dispensers 84 may be used. After deposit of the granules 42, the asphalt-coated sheet 80 is turned around a slate drum 86 to press the granules 42 into the asphalt coating 46 and to temporarily invert the asphalt-coated sheet 80.


Referring again to FIG. 10, the roofing material; i.e., the shingle blank 26, may also include the web 56. It will be understood however, that the web 56 is not required. The web 56 is selected for the type of roofing material and is positioned and bonded in such a manner as to provide the roofing material with improved impact resistance to a variety of impacts. As shown in FIG. 10, the web 56 may be payed out from a roll 96 onto the lower surface of the asphalt-coated sheet 80 while the asphalt-coated sheet 80 is inverted on the slate drum 86. As the asphalt-coated sheet 80 turns around the slate drum 86, the asphalt coating 46 is still hot, soft, and tacky, so that the web 56 adheres to the lower surface of the asphalt coating 46 and is pulled around the slate drum 86 along with the asphalt-coated sheet 80. The web 56 may be applied to the lower surface of the asphalt-coated sheet 80 in the prime portions 30, but not in the headlap portions 28. Application of the web 56 beneath just the prime portion 30 of a roofing material provides improved impact resistance to the portion of the roofing material exposed to the elements on a roof, while minimizing the overall cost of the roofing material. While the embodiment shown in FIG. 10 illustrates one method of applying a web to the roofing material, it will be understood that other suitable bonding methods, such as for example heat sealing, ultrasonic welding, pressure sensitive or hot melt adhesive, electrostatic bonding, and physical intertwining by such means as needling or stitching, may be used. Bonding the web 56 to the asphalt-coated sheet 80 forms webbed sheet (not shown). In an embodiment wherein a web 56 is bonded to the asphalt-coated sheet 80 to form a webbed sheet, the webbed sheet may be pressed and cut as described below regarding the asphalt-coated sheet 80.


In the illustrated embodiment, the asphalt-coated sheet 80 is passed between backing roller 99a and press roller 99b. The rollers, 99a and 99b, are configured to compress the asphalt-coated sheet 80 with sufficient pressure to embed the granules 42 into the asphalt-coated sheet 80. Passing the asphalt-coated sheet 80 through the backing roller 99a and the press roller 99b forms the embedded sheet 100.


Referring again to FIG. 10, after the embedded sheet 100 is formed by the backing roller 99a and the press roller 99b; the embedded sheet 100 is cooled by any suitable cooling apparatus 101, or allowed to cool at ambient temperature to form a cooled sheet 102.


If desired, the cooled sheet 102 may be passed through applicators 104 and 105. The applicators 104 and 105 are configured to apply a sealant to the surfaces of the cooled sheet 102. The applicators 104 and 105 may be any suitable mechanism or device for applying the sealant to the cooled sheet 102. In the illustrated embodiment, the applicator 104 applies the sealant to the top surface of the cooled sheet 102 and the applicator 105 applies the sealant to the bottom surface of the cooled sheet 102. In other embodiments, the sealant may be applied to just the top or bottom surfaces of the cooled sheet 102. Application of the sealant to the cooled sheet 102 forms sealed sheet 107.


The sealed sheet 107 is then passed through cutting roller 108a and anvil roller 108b. In the illustrated embodiment the rollers, 108a and 108b, are configured to perform several manufacturing operations. The cutting roller 108a and the anvil roller 108b are configured to form the cut lines 60. As discussed above, the cut lines 60 may be positioned anywhere along the length L of the shingle blank 26. The cutting roller 108a includes a plurality of knife blades 109 spaced apart and extending radially outwardly from a surface of the cutting roller 108a. The knife blades 109 rotate with the rotation of the cutting roller 108a and form the continuous cut portion 64 and the perforated portion 62 of the cut lines 60 upon contact with the sealed sheet 107. The cutting roller 108a and the anvil roller 108b may also be configured to cut the sealed sheet 107 to form individual cut shingle blanks 58 and/or individual shingle blanks 26.


While FIG. 10 illustrates one example of an apparatus configured for forming the cut line 60, it will be understood that other suitable apparatus or combinations of apparatus may be used.


The cut shingle blanks 26 may be collected and packaged. While the embodiment shown in FIG. 10 illustrates forming the cut line 60 and cutting the sealed sheet 107 into individual cut shingle blanks 58 as a single process, it is within the contemplation of this invention that the step of forming the cut line 60 and the step of cutting the sealed sheet 107 into individual cut shingle blanks 58 may be completed at different times and by different apparatus.


Referring again to FIGS. 4A and 4B, the cut shingle blanks 58 arrive at an installation site having the cut lines 60 formed therein. During installation, the roofing installer cuts or tears the cut shingle blank 58 along the perforated portions 62 of the cut lines 60 to form hip and ridge roofing material 24. The perforations 66 allow for hip and ridge roofing material 24 to be formed from the cut shingle blanks 58 as the perforations 66 allow the headlap region 28 to be easily cut or torn.


The formed hip and ridge roofing material 24 has perforated edges 65. The configuration of the perforations 66 result in a perforated edge 65 which in some embodiments may be somewhat ragged. For example, if the individual perforations 66 have a relatively long length or if a larger number of perforations 66 are formed, then the perforated edges 65 may be relatively smoother. Conversely, if the individual perforations 66 have a relatively shorter length or if a fewer number of perforations 66 are formed, the perforated edges 65 may then be relatively more ragged.


In other embodiments, the perforations 66 of the perforated portion 62, and the continuous cut portion 64 may extend through any desired number of layers of a shingle blank. For example, as shown in FIG. 6, a second embodiment of the cut shingle blank 158 may include one layer of the shingle blank 26, but without the web 56. The cut shingle blank 158 is otherwise identical to the cut shingle blank 58, and like reference numbers are used to indicate corresponding parts.


Referring now to FIG. 7, a portion of a third embodiment of the cut shingle blank is shown generally at 258. The cut shingle blank 258 includes at least portions of two granule-coated mats bonded together. In the illustrated embodiment, the cut shingle blank 258 includes a first longitudinally extending shingle blank layer or lower granule coated mat 50L and a second longitudinally extending layer or granule coated mat 50U. The cut shingle blank 258 also includes a plurality of cut lines 260, one of which is shown in section in FIG. 7. The illustrated cut line 260 extends from the headlap longitudinal edge (not shown in FIG. 7), across the headlap region 228 and the prime region 230, to the prime longitudinal edge (not shown in FIG. 7).


The cut line 260 includes a perforated portion 262 and a continuous cut portion 264. The perforated portion 262 of the cut line 260 includes perforations 266.


In the embodiment illustrated in FIG. 7, the perforations 266 extend through both layers of the granule-coated mats 50L and 50U in the headlap region 228. The continuous cut portion 264 also extends through both layers of the granule-coated mats 50L and 50U in the prime region 230.


A portion of a second embodiment of a knife blade 209 is shown in FIG. 7 and includes a continuous cutting portion 210 and a toothed portion 212. The knife blade 209 is structured and configured such that the continuous cutting portion 210 and the toothed portion 212 of the knife blade 209 cut completely through both layers of the granule-coated mats 50L and 50U.


Referring now to FIG. 8, a portion of a fourth embodiment of the cut shingle blank is shown generally at 358. The cut shingle blank 358 includes at least portions of two granule-coated mats 50L and 50U bonded together. The cut shingle blank 358 also includes a plurality of cut lines 360, one of which is shown in section in FIG. 8. The illustrated cut line 360 extends from the headlap longitudinal edge (not shown in FIG. 8), across the headlap region 328 and the prime region 330, to the prime longitudinal edge (not shown in FIG. 8). The cut line 360 includes a perforated portion 362 and a continuous cut portion 364. The perforated portion 362 of the cut line 360 includes perforations 366.


In the embodiment illustrated in FIG. 8, a portion of a third embodiment of the knife blade is shown at 309 and includes a continuous cutting portion 310 and a toothed portion 312. The knife blade 309 is structured and configured such that the continuous cutting portion 310 cuts completely through both layers of the granule-coated mats 50L and 50U to define the continuous cut portion 364. The knife blade 309 is further structured and configured such that the toothed portion 312 forms a continuous cut through the first or lower granule-coated mat 50L and forms perforations 366 through the second or upper granule-coated mat 50U.


Advantageously, because the lower granule-coated mat 50L is cut through its entire thickness, and only the upper granule-coated mat 50U has perforations, the cut shingle blank 358 is easier to tear than a similar two or more layer laminated shingle blank having perforations through the two or more layers.


Referring now to FIG. 9, a portion of a fifth embodiment of the cut shingle blank is shown generally at 458. The cut shingle blank 458 includes at least portions of three granule-coated mats 50L, 501, and 50U bonded together. The cut shingle blank 458 also includes a plurality of cut lines 460, one of which is shown in section in FIG. 9. The illustrated cut line 360 extends from the headlap longitudinal edge (not shown in FIG. 9), across the headlap region 428 and the prime region 430, to the prime longitudinal edge (not shown in FIG. 9). The cut line 460 includes a perforated portion 462 and a continuous cut portion 464. The perforated portion 462 of the cut line 460 includes perforations 466.


In the embodiment illustrated in FIG. 9, a portion of a fourth embodiment of the knife blade is shown at 409 and includes a continuous cutting portion 410 and a toothed portion 412. The knife blade 409 is structured and configured such that the continuous cutting portion 410 cuts completely through all layers (three layers 50L, 501, and 50U are illustrated in FIG. 9) of the granule-coated mats 50L, 501, and 50U to define the continuous cut portion 464. The knife blade 409 is further structured and configured such that the toothed portion 412 forms a continuous cut through the first or lower granule-coated mat 50L and an intermediate granule-coated mate 501, and forms perforations 366 through only the third or upper granule-coated mat 50U.


Advantageously, because the lower and intermediate granule-coated mats 50L and 501 are cut through their entire thicknesses, and only the upper granule-coated mat 50U has perforations, the cut shingle blank 458 is easier to tear than a similar three or more layer laminated shingle blank having perforations through three or more layers.


The present invention should not be considered limited to the specific examples described herein, but rather will be understood to cover all aspects of the invention. Various modifications, equivalent processes, as well as numerous structures and devices to which the present invention may be applicable will be readily apparent to those of skill in the art. Those skilled in the art will understand that various changes may be made without departing from the scope of the invention, which is not to be considered limited to what is described in the specification.

Claims
  • 1. A shingle blank comprising an asphalt coated mat having a cut line formed in the asphalt coated mat; wherein the cut line includes a continuous cut portion and a perforated portion; and wherein the perforated portion is structured and configured to facilitate separation of the shingle blank into discrete portions, and wherein the continuous cut portion forms adjacent cut edges on the shingle blank along the continuous cut portion, the edges being in contact prior to separation of the shingle blank into discrete portions.
  • 2. The shingle blank according to claim 1, wherein the shingle blank has a length and a width, and wherein the cut line extends substantially across the width of the shingle blank.
  • 3. The shingle blank according to claim 2, wherein the cut line extends substantially across the width of the shingle blank between a first longitudinal edge and a second longitudinal edge in a direction substantially perpendicular to the length of the shingle blank.
  • 4. The shingle blank according to claim 1, wherein the continuous cut portion defines a continuous cut extending through a thickness of the asphalt coated mat.
  • 5. The shingle blank according to claim 1, wherein the asphalt coated mat is configured to include a longitudinally extending prime region and a longitudinally extending headlap region.
  • 6. The shingle blank according to claim 5, wherein the continuous cut portion of the cut line is formed in the prime region and the perforated portion of the cut line is formed in the headlap region.
  • 7. A shingle blank comprising a first shingle blank layer defining a longitudinally extending prime region and a longitudinally extending headlap region; wherein at least the prime region includes a second longitudinally extending layer bonded to the first shingle blank layer;wherein a cut line is formed in the shingle blank; andwherein the cut line includes a continuous cut portion formed in the prime region and a perforated portion formed in the headlap region,wherein the perforated portion is structured and configured to facilitate separation of the shingle blank into discrete portions, each of the discrete portions has a headlap region and a prime region with substantially the same length.
  • 8. The shingle blank according to claim 7, wherein the first shingle blank layer is an asphalt coated mat.
  • 9. The shingle blank according to claim 8, wherein the second longitudinally extending layer is an asphalt coated mat.
  • 10. The shingle blank according to claim 7, wherein the shingle blank has a length and a width, and wherein the cut line extends substantially across the width of the shingle blank.
  • 11. The shingle blank according to claim 7, wherein the cut line extends substantially across the width of the shingle blank between a first longitudinal edge and a second longitudinal edge in a direction substantially perpendicular to the length of the shingle blank.
  • 12. The shingle blank according to claim 7, wherein the continuous cut portion defines a continuous cut extending through a thickness of the shingle blank.
  • 13. A method of forming a shingle blank comprising forming a cut line in an asphalt coated mat to define a cut shingle blank; wherein the cut line includes a continuous cut portion and a perforated portion; and wherein the perforated portion is structured and configured to facilitate separation of the shingle blank into discrete portions, and wherein the continuous cut portion forms adjacent cut edges on the shingle blank along the continuous cut portion, the edges being in contact prior to separation of the shingle blank into discrete portions.
  • 14. The method according to claim 13, further including separating the cut shingle blank along the cut line into discrete portions.
  • 15. The method according to claim 13, wherein the shingle blank has a length and a width, and wherein the cut line extends substantially across the width of the shingle blank.
  • 16. The method according to claim 15, wherein the cut line extends substantially across the width of the shingle blank between a first longitudinal edge and a second longitudinal edge in a direction substantially perpendicular to the length of the shingle blank.
  • 17. The method according to claim 13, wherein the continuous cut portion defines a continuous cut extending through a thickness of the asphalt coated mat.
  • 18. The method according to claim 13, wherein the asphalt coated mat is configured to include a longitudinally extending prime region and a longitudinally extending headlap region.
  • 19. The method according to claim 18, wherein the continuous cut portion of the cut line is formed in the prime region and the perforated portion of the cut line is formed in the headlap region.
  • 20. A shingle blank comprising: a sheet including a substrate coated with an asphalt coating, the sheet configured to include a prime region and a headlap region;a web limited to the prime region;at least one perforation line positioned in the headlap region and having a plurality of perforations; andat least one continuous cut line extending substantially across the prime region, the at least one continuous cut line being configured to extend through the substrate, the asphalt coating, and the web;wherein the at least one perforation line and the at least one continuous cut line are sufficient to facilitate separation of the shingle blank to form a plurality of hip and ridge shingles each having a prime region and a headlap region having substantially the same length.
  • 21. The shingle blank of claim 20 in which the shingle blank has a length and wherein the at least one perforation line extends substantially across the headlap region in a direction substantially perpendicular to the length of the shingle blank.
  • 22. The shingle blank of claim 20 in which the perforations have a length of about 0.25 inches.
  • 23. The shingle blank of claim 20 in which the perforations are spaced apart a distance of about 0.25 inches from edge to edge.
  • 24. The shingle blank of claim 20 in which the web has a depth of approximately 0.03125 inches.
  • 25. A shingle blank comprising: a sheet including a substrate coated with an asphalt coating, the sheet configured to include a prime region and a headlap region, the asphalt coating including an upper section and a lower section, the upper section being positioned above the substrate, the lower section being positioned below the substrate;a web limited to a lower section of the prime region; andat least one continuous cut line and at least one perforation line positioned in the shingle blank, the continuous cut line configured to extend through the substrate, the upper and lower sections of the asphalt coating and the web;wherein the at least one perforation line has a plurality of perforations sufficient to facilitate separation of the shingle blank to form a plurality of hip and ridge shingles, and wherein the continuous cut line forms adjacent cut edges on the shingle blank along the continuous cut portion, the edges being in contact prior to separation of the shingle blank.
  • 26. The shingle blank of claim 25 in which the shingle blank has a length and wherein the at least one perforation line and the at least one continuous cut line combine to extend substantially across the shingle blank in a direction substantially perpendicular to the length of the shingle blank.
  • 27. The shingle blank of claim 25 in which the perforations have a length of about 0.25 inches.
  • 28. The shingle blank of claim 25 in which the perforations are spaced apart a distance of about 0.25 inches from edge to edge.
  • 29. The shingle blank of claim 25 in which the web has a depth of approximately 0.03125 inches.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 12/119,937 filed May 13, 2008, and a continuation-in-part of co-pending U.S. patent application Ser. No. 12/392,392 filed Feb. 25, 2009, the disclosures of both are incorporated herein by reference in their entirety.

US Referenced Citations (290)
Number Name Date Kind
D48172 DunLany Nov 1915 S
1495070 Finley May 1924 A
1516243 Perry Nov 1924 A
1549723 Mattison Aug 1925 A
1583563 Abraham May 1926 A
1585693 Robinson May 1926 A
1597135 Wittenberg Aug 1926 A
1601731 Flood Oct 1926 A
1665222 Robinson Apr 1928 A
1666429 Stolp, Jr. Apr 1928 A
1676351 Robinson Jul 1928 A
1701926 Kirschbraun Feb 1929 A
1799500 Brophy Apr 1931 A
1802868 Roscoe Apr 1931 A
1843370 Overbury Feb 1932 A
1885346 Harsherger Nov 1932 A
1897139 Overbury Feb 1933 A
1898989 Harshberger Feb 1933 A
2058167 McQuade Oct 1936 A
2161440 Venrick Jun 1939 A
2490430 Greider et al. Dec 1949 A
2798006 Oldfield et al. Jul 1957 A
2847948 Truitt Aug 1958 A
3127701 Jastrzemski Apr 1964 A
3138897 McCorkle Jun 1964 A
3252257 Price et al. May 1966 A
3332830 Tomlinson et al. Jul 1967 A
3377762 Chalmers Apr 1968 A
3468086 Warner Sep 1969 A
3468092 Chalmers Sep 1969 A
3624975 Morgan et al. Dec 1971 A
3664081 Martin et al. May 1972 A
3813280 Olszyk et al. May 1974 A
154334 Obverbury Aug 1974 A
3913294 Freiborg Oct 1975 A
4091135 Tajima et al. May 1978 A
4194335 Diamond Mar 1980 A
4195461 Thiis-Evensen Apr 1980 A
4274243 corbin et al. Jun 1981 A
4301633 Neumann Nov 1981 A
4307552 Votte Dec 1981 A
4333279 Corbin et al. Jun 1982 A
4352837 Kopenhaver Oct 1982 A
4366197 Hanlon et al. Dec 1982 A
4404783 Freiborg Sep 1983 A
4434589 Freiborg Mar 1984 A
4439955 Freiborg Apr 1984 A
4459157 Koons Jul 1984 A
4527374 Corbin Jul 1985 A
4580389 Freiborg Apr 1986 A
4637191 Smith Jan 1987 A
4672790 Freiborg Jun 1987 A
4680909 Stewart Jul 1987 A
4706435 Stewart Nov 1987 A
4717614 Bondoc et al. Jan 1988 A
4738884 Algrim et al. Apr 1988 A
4755545 Lalwani Jul 1988 A
4789066 Lisiecki Dec 1988 A
D300257 Stahl Mar 1989 S
4817358 Lincoln et al. Apr 1989 A
4824880 Algrim et al. Apr 1989 A
4835929 bondoc et al. Jun 1989 A
4848057 MacDonald et al. Jul 1989 A
4856251 Buck Aug 1989 A
4869942 Jennus et al. Sep 1989 A
D309027 Noone et al. Jul 1990 S
D313278 Noone Dec 1990 S
5036119 Berggren Jul 1991 A
5039755 Chamberlain et al. Aug 1991 A
5065553 Magid Nov 1991 A
5094042 Freiborg Mar 1992 A
5181361 Hannah et al. Jan 1993 A
5195290 Hulett Mar 1993 A
5209802 Hannah et al. May 1993 A
5232530 Malmquist et al. Aug 1993 A
5239802 robinson Aug 1993 A
5247771 Poplin Sep 1993 A
D340294 Hannah et al. Oct 1993 S
5271201 noone et al. Dec 1993 A
5295340 Collins Mar 1994 A
D347900 Stapleton Jun 1994 S
5319898 Freiborg Jun 1994 A
5365711 Pressutti et al. Nov 1994 A
5369929 Wqeaver et al. Dec 1994 A
5375387 Davenport Dec 1994 A
5375388 Poplin Dec 1994 A
5400558 Hannah et al. Mar 1995 A
5419941 Noone et al. May 1995 A
5426902 Stahl et al. Jun 1995 A
5467568 Sieling Nov 1995 A
5471801 Kupczyk et al. Dec 1995 A
D366124 Hannah et al. Jan 1996 S
5488807 Terrenzio et al. Feb 1996 A
D369421 Kiik et al. Apr 1996 S
D375563 Hannah et al. Nov 1996 S
5570556 Wagner Nov 1996 A
5571596 Johnson Nov 1996 A
5575876 Noone et al. Nov 1996 A
5577361 Grabek, Jr. Nov 1996 A
D376660 Hannah et al. Dec 1996 S
5611186 Weaver Mar 1997 A
5615523 Wells et al. Apr 1997 A
5624522 Belt et al. Apr 1997 A
D379672 Lamb et al. Jun 1997 S
5651734 Morris Jul 1997 A
5660014 Stahl et al. Aug 1997 A
D383223 Sieling et al. Sep 1997 S
5664385 Koschitzky Sep 1997 A
5666776 Weaver et al. Sep 1997 A
5676597 Bettoli et al. Oct 1997 A
5711126 Wells Jan 1998 A
5746830 Burton May 1998 A
5795389 Koschitzky Aug 1998 A
5799459 Covert Sep 1998 A
D400268 Sieling et al. Oct 1998 S
5822943 Frankoski et al. Oct 1998 A
D400981 Bondoc et al. Nov 1998 S
D403087 Sieling et al. Dec 1998 S
5853858 Bondoc Dec 1998 A
5860263 Sieling et al. Jan 1999 A
D406361 Bondoc et al. Mar 1999 S
5901517 Stahl et al. May 1999 A
5916103 roberts Jun 1999 A
5939169 Bondoc et al. Aug 1999 A
5950387 Stahl et al. Sep 1999 A
D417016 Moore et al. Nov 1999 S
D417513 Blampied Dec 1999 S
6010589 Stahl et al. Jan 2000 A
6014847 Phillips Jan 2000 A
6021611 Wells et al. Feb 2000 A
6038826 Stahl et al. Mar 2000 A
6044608 Stahl et al. Apr 2000 A
6070384 Chich Jun 2000 A
6083592 Chich Jul 2000 A
6104329 Kawano Aug 2000 A
6105329 Bondoc et al. Aug 2000 A
RE36858 Pressutti et al. Sep 2000 E
6112492 Wells et al. Sep 2000 A
6125602 Freiborg et al. Oct 2000 A
6145265 Malarkey et al. Nov 2000 A
6148578 Nowacek et al. Nov 2000 A
6156289 Chopra et al. Dec 2000 A
6182400 Freiborg et al. Feb 2001 B1
6185895 Rettew Feb 2001 B1
6190754 Bondoc et al. Feb 2001 B1
6199338 Hudson, Jr. et al. Mar 2001 B1
6220329 King et al. Apr 2001 B1
6247289 Karpinia Jun 2001 B1
6253512 Thompson et al. Jul 2001 B1
6310122 Butler et al. Oct 2001 B1
6343447 Geissels et al. Feb 2002 B2
6351913 Freiborg et al. Mar 2002 B1
6355132 Becker et al. Mar 2002 B1
6361851 Sieling et al. Mar 2002 B1
6397546 Malarkey et al. Jun 2002 B1
6397556 Karpinia Jun 2002 B1
6401425 Frame Jun 2002 B1
6426309 Miller et al. Jul 2002 B1
6467235 Kalkanoglu et al. Oct 2002 B2
6471812 Thompson et al. Oct 2002 B1
D466629 Phillips Dec 2002 S
6487828 Phillips Dec 2002 B1
6494010 Miller et al. Dec 2002 B1
6510664 Kupczyk Jan 2003 B2
6523316 Stahl et al. Feb 2003 B2
6530189 Freshwater et al. Mar 2003 B2
D473326 Phillips Apr 2003 S
6565431 Villela May 2003 B1
6578336 Elliott Jun 2003 B2
6610147 Aschenbeck Aug 2003 B2
6652909 lassiter Nov 2003 B2
6679020 Becker et al. Jan 2004 B2
6679308 Becker et al. Jan 2004 B2
6691489 Frame Feb 2004 B2
6708456 Kiik et al. Mar 2004 B2
6709760 rumbore et al. Mar 2004 B2
6709994 Miller et al. Mar 2004 B2
6725609 Freiborg et al. Apr 2004 B2
6758019 Kalkanoglu et al. Jul 2004 B2
6759454 Stephens et al. Jul 2004 B2
6790307 Elliott Sep 2004 B2
6804919 Railkar Oct 2004 B2
6813866 Naipawer, III Nov 2004 B2
6823637 Elliott et al. Nov 2004 B2
6895724 Naipawer, III May 2005 B2
6933037 McCumber et al. Aug 2005 B2
6936329 Kiik et al. Aug 2005 B2
6990779 Kiik et al. Jan 2006 B2
7021468 Cargile, Jr. Apr 2006 B2
7029739 Weinstein et al. Apr 2006 B2
7048990 Koschitzky May 2006 B2
7073295 Pressutti et al. Jul 2006 B2
7082724 Railkar et al. Aug 2006 B2
7118794 Kalkanoglu et al. Oct 2006 B2
7121055 Penner Oct 2006 B2
7124548 Pressutti et al. Oct 2006 B2
7146771 Swann Dec 2006 B2
7165363 Headrick et al. Jan 2007 B2
7238408 Aschenbeck et al. Jul 2007 B2
7267862 Burke et al. Sep 2007 B1
7282536 Handlin et al. Oct 2007 B2
7556849 Thompson et al. Jul 2009 B2
D610720 Elliott Feb 2010 S
7765763 Teng et al. Aug 2010 B2
7781046 Kalkanoglu et al. Aug 2010 B2
7805905 Rodrigues et al. Oct 2010 B2
7820237 Harrington, Jr. Oct 2010 B2
7836654 Belt et al. Nov 2010 B2
7877949 Elliott Feb 2011 B1
7909235 Holley, Jr. Mar 2011 B2
7921606 Quaranta et al. Apr 2011 B2
8006457 Binkley et al. Aug 2011 B2
8127514 Binkley et al. Mar 2012 B2
8181413 Belt et al. May 2012 B2
8216407 Kalkanoglu et al. Jul 2012 B2
8240102 Belt et al. Aug 2012 B2
8266861 Koch et al. Sep 2012 B2
8281520 Quaranta et al. Oct 2012 B2
8281539 Kalkanoglu Oct 2012 B2
8302358 Kalkanoglu Nov 2012 B2
8316608 Binkley et al. Nov 2012 B2
8323440 Koch et al. Dec 2012 B2
8371072 Shanes et al. Feb 2013 B1
8371085 Koch Feb 2013 B2
8453408 Kalkanoglu Jun 2013 B2
20010000372 Kalkanoglu et al. Apr 2001 A1
20010049002 McCumber et al. Dec 2001 A1
20020000068 Freiborg et al. Jan 2002 A1
20020038531 Freshwater et al. Apr 2002 A1
20020078651 Freshwater et al. Jun 2002 A1
20020114913 Weinstein et al. Aug 2002 A1
20030040241 Kiik et al. Feb 2003 A1
20030070579 Hong et al. Apr 2003 A1
20030093958 Freiborg et al. May 2003 A1
20030093963 Stahl et al. May 2003 A1
20030124292 Unterreiter Jul 2003 A1
20030138601 Elliott Jul 2003 A1
20040055240 Kiik et al. Mar 2004 A1
20040055241 Railkar Mar 2004 A1
20040079042 Elliott Apr 2004 A1
20040083672 Penner May 2004 A1
20040083673 Kalkanoglu et al. May 2004 A1
20040083674 Kalkanoglu et al. May 2004 A1
20040109971 Weinstein et al. Jun 2004 A1
20040111996 Heroneme Jun 2004 A1
20040123537 Elliott et al. Jul 2004 A1
20040123543 Elliott et al. Jul 2004 A1
20040148874 Jolitz et al. Aug 2004 A1
20040172908 Swann Sep 2004 A1
20040206012 Pressutti et al. Oct 2004 A1
20040206035 Kandalgaonkar Oct 2004 A1
20040258883 Weaver Dec 2004 A1
20050005555 Naipawar Jan 2005 A1
20050137295 Kendrick et al. Jun 2005 A1
20050193673 Rodrigues et al. Sep 2005 A1
20050204675 Snyder et al. Sep 2005 A1
20050210808 Larson et al. Sep 2005 A1
20050235599 Kalkanoglu et al. Oct 2005 A1
20050252136 Hardin Nov 2005 A1
20060032174 Floyd Feb 2006 A1
20060175386 Holley, Jr. Aug 2006 A1
20060179767 Miller et al. Aug 2006 A1
20060201094 Lassiter Sep 2006 A1
20060265990 Kalkanoglu et al. Nov 2006 A1
20070020436 Teng et al. Jan 2007 A1
20070039274 Harrington et al. Feb 2007 A1
20070042158 Belt et al. Feb 2007 A1
20070107372 Harrington, Jr. May 2007 A1
20070144077 Quaranta et al. Jun 2007 A1
20070266665 Todd et al. Nov 2007 A1
20080134612 Koschitzky Jun 2008 A1
20090038257 Todd et al. Feb 2009 A1
20090139175 Todd et al. Jun 2009 A1
20090282767 Grubka Nov 2009 A1
20100077689 Kalkanoglu et al. Apr 2010 A1
20100143667 Collins et al. Jun 2010 A1
20100192496 Koch et al. Aug 2010 A1
20100192500 Koch Aug 2010 A1
20100212240 Grubka Aug 2010 A1
20100212246 Grubka Aug 2010 A1
20100236178 Loftus Sep 2010 A1
20100239807 Grubka Sep 2010 A1
20100310825 Kalkanoglu et al. Dec 2010 A1
20100313512 Rodrigues et al. Dec 2010 A1
20110005158 Kailey et al. Jan 2011 A1
20110126485 Bleil et al. Jun 2011 A1
20110209428 Elliott Sep 2011 A1
20110214378 Grubka Sep 2011 A1
20110319533 Gauthier et al. Dec 2011 A1
20130177728 Grubka et al. Jul 2013 A1
Foreign Referenced Citations (8)
Number Date Country
1207975 Jul 1986 CA
2176391 Sep 1994 CN
50-002937 Jan 1975 JP
2007108846 Sep 2007 WO
2008052029 May 2008 WO
2009016281 Feb 2009 WO
2010098972 Sep 2010 WO
2011100217 Aug 2011 WO
Non-Patent Literature Citations (76)
Entry
Office action from U.S. Appl. No. 12/702,457, filed Nov. 21, 2013.
Office action from U.S. Appl. No. 13/019,028 dated Dec. 19, 2012.
Interview Summary from U.S. Appl. No. 12/727,459 dated Dec. 28, 2011.
Office action from U.S. Appl. No. 12/727,459 dated Jan. 19, 2012.
Interview Summary from U.S. Appl. No. 12/727,459 dated Apr. 13, 2012.
Office action from U.S. Appl. No. 12/727,459 dated May 30, 2012.
Office action from U.S. Appl. No. 12/727,459 dated Oct. 3, 2012.
Office action from U.S. Appl. No. 12/727,470 dated Aug. 10, 2012.
Office action from U.S. Appl. No. 12/831,130 dated Feb. 29, 2012.
Office action from U.S. Appl. No. 12/831,130 dated Jun. 14, 2012.
Office action from U.S. Appl. No. 12/831,130 dated Aug. 9, 2012.
Office action from U.S. Appl. No. 13/019,028 dated Aug. 10, 2011.
Office action from U.S. Appl. No. 13/019,028 dated Jun. 21, 2012.
Office action from Japanese Application No. 2008-525265 dated Dec. 12, 2011.
Office action from U.S. Appl. No. 13/344,025 dated Aug. 16, 2013.
Office action from U.S. Appl. No. 13/193,864, filed Nov. 4, 2013.
Office action from U.S. Appl. No. 13/193,864 dated May 15, 2013.
Office action from U.S. Appl. No. 12/727,470 dated Apr. 10, 2013.
International Search Report from PCT/US06/30633 dated Nov. 28, 2006.
International Search Report and Written Opinion from PCT/US10/23541 dated Jul. 6, 2010.
International Search Report and Written Opinion from PCT/US11/023989 dated May 26, 2011.
Office action from U.S. Appl. No. 09/515,928 dated Mar. 15, 2001.
Office action from U.S. Appl. No. 09/515,928 dated Oct. 11, 2001.
Office action from U.S. Appl. No. 09/515,928 dated Jan. 2, 2002.
Advisory action from U.S. Appl. No. 09/515,928 dated Jun. 7, 2002.
Office action from U.S. Appl. No. 09/515,928 dated Sep. 16, 2004.
Advisory action from U.S. Appl. No. 09/515,928 dated Feb. 22, 2005.
Office action from U.S. Appl. No. 09/515,928 dated Dec. 2, 2005.
Office action from U.S. Appl. No. 09/515,928 dated Apr. 25, 2006.
Office action from U.S. Appl. No. 09/515,928 dated Oct. 11, 2006.
Advisory action from U.S. Appl. No. 09/515,928 dated Jul. 19, 2007.
Office action from U.S. Appl. No. 09/515,928 dated Sep. 19, 2007.
Notice of Panel Decision from Pre-Appeal Brief Review from U.S. Appl. No. 09/515,928 dated Feb. 8, 2008.
Examiner's Answer from U.S. Appl. No. 09/515,928 dated Jun. 18, 2008.
Decision on Appeal from 09/515,928 dated Jul. 28, 2010.
Notice of Allowance from U.S. Appl. No. 09/515,928 dated Sep. 27, 2010.
Office action from U.S. Appl. No. 12/119,937 dated Apr. 14, 2010.
Office action from U.S. Appl. No. 12/119,937 dated Nov. 4, 2010.
Advisory action from U.S. Appl. No. 12/119,937 dated Jan. 19, 2011.
Office action from U.S. Appl. No. 12/119,937 dated Apr. 3, 2012.
Office action from U.S. Appl. No. 12/392,392 dated Mar. 4, 2010.
Office action from U.S. Appl. No. 12/392,392 dated Sep. 13, 2010.
Office action from U.S. Appl. No. 12/392,392 dated Dec. 22, 2010.
Interview Summary from U.S. Appl. No. 12/392,392 dated Feb. 3, 2011.
Office action from U.S. Appl. No. 12/392,392 dated Aug. 18, 2011.
Office action from U.S. Appl. No. 12/392,392 dated Nov. 21, 2011.
Advisory Action from U.S. Appl. No. 12/392,392 dated Feb. 27, 2012.
Office action from U.S. Appl. No. 12/392,392 dated Jun. 14, 2012.
Office action from U.S. Appl. No. 12/392,392 dated Jul. 19, 2012.
Office action from U.S. Appl. No. 12/702,457 dated Jun. 18, 2012.
Office action from U.S. Appl. No. 12/702,457 dated Jul. 20, 2012.
Office action from U.S. Appl. No. 12/717,519 dated Oct. 3, 2011.
Office action from U.S. Appl. No. 12/717,519 dated May 1, 2012.
Office action from U.S. Appl. No. 12/727,459 dated May 25, 2011.
Office action from U.S. Appl. No. 12/727,459 dated Aug. 30, 2011.
Advisory Action from U.S. Appl. No. 12/727,459 dated Dec. 13, 2012.
Office action from U.S. Appl. No. 13/344,025 dated Feb. 5, 2013.
Office action from Chinese application No. 200680028893 dated Mar. 27, 2009.
Office action from U.S. Appl. No. 09/515,928 dated Apr. 10, 2007.
Advisory action from U.S. Appl. No. 12/392,392 dated Dec. 22, 2010.
Office action from U.S. Appl. No. 12/727,459 dated Jul. 11, 2013.
Office action from U.S. Appl. No. 12/717,519 dated Jun. 12, 2014.
Office action from U.S. Appl. No. 13/344,025 dated Mar. 27, 2014.
Interview Summary from U.S. Appl. No. 12/702,457 dated Feb. 26, 2014.
Office action from U.S. Appl. No. 12/727,459 dated Jan. 10, 2014.
Haynes, Shellflex 3681 MSDS, Jan. 4, 1999, 5 pgs.
Office action from U.S. Appl. No. 12/702,457 dated May 7, 2014.
Office action from U.S. Appl. No. 12/727,459 dated Jun. 6, 2014.
Office action from U.S. Appl. No. 13/344,025 mailed Sep. 24, 2014.
Interview Summary from U.S. Appl. No. 12/727,459 dated Aug. 19, 2014.
Interview Summary from U.S. Appl. No. 12/702,457 dated Jul. 31, 2014.
Advisory Action from U.S. Appl. No. 12/702,457 dated Aug. 27, 2014.
Interview Summary from U.S. Appl. No. 13/344,025 dated Jul. 30, 2014.
Office action from U.S. Appl. No. 12/702,457 dated Dec. 3, 2014.
Office action from U.S. Appl. No. 12/727,459 dated Jan. 26, 2015.
Office action from U.S. Appl. No. 12/717,519 dated Dec. 12, 2014.
Related Publications (1)
Number Date Country
20110151170 A1 Jun 2011 US
Continuation in Parts (2)
Number Date Country
Parent 12119937 May 2008 US
Child 13039726 US
Parent 12392392 Feb 2009 US
Child 12119937 US