This application claims the benefit of the Korean Patent Application No. 10-2018-0016715, filed on Feb. 12, 2018, which is hereby incorporated by reference as if fully set forth herein.
The present invention relates to a ship collision avoidance method using a psychological character of a ship officer that can provide support allowing ships to avoid collision between one another by using the psychological character of ship officers in order to prevent marine accidents.
Presently, ships are capable of detecting (or sensing) risks of ship collision by using diverse electronic navigation equipment, such as Automatic Radar Plotting Aids/Radar (ARPA/Radar), an Electric Chart Display and Information System (ECDIS), an Automatic Identification System (AIS), and so on.
Based on a Ship Domain (SD) theory, a Distance at the Closest Point of Approach (DCPA) and a Time to the Closest Point of Approach (TCPA) between ships are used for evaluating a collision risk between ships.
However, a ship collision avoidance method using the ship domain theory and the DCPA and TCPA have numerous problems and disadvantages that are yet to be resolved.
Moreover, even though diverse navigation equipment is used for avoiding (or preventing) collision, marine collision accidents are still occurring very frequently. This is because the psychological character (most particularly, a sense of crisis (or danger) of a possible collision that is sensed during a situation of ship collision) of an Officer on the Watch (OOW) operating the ship (or vessel) is not taken into consideration.
Generally, when a dangerous situation occurs or is expected to occur, a human being naturally senses and perceives the imminent crisis. However, the level of crisis perception may differ for each individual.
In a situation where a collision between two ships occurs, the OOW is known to perceive a collision risk (CR).
And, in an encounter situation where a collision between two ships is likely (or possible) to occur, the OOW operating (or handling) the ship is expected and required to perform a series of operations (or actions) for avoiding the collision according to the Convention on the International Regulations for Preventing Collisions at Sea (COLREG).
Meanwhile, it has been reported that 70% or more of the marine accidents occurring worldwide is caused by human errors. The International Maritime Organization (IMO) has also recognized the gravity of such human errors and is now carrying out diverse actions for preventing such critical human errors.
In case a ship collision situation occurs, the CR that is perceived by the OOW plays a very important and critical role in preventing human errors. This is because, by analyzing the CR, characteristics of diverse collision situations that are perceived by an individual OOW or a specific OOW group may be derived, thereby allowing a solution for preventing marine accidents that are caused by human errors to be devised.
However, in the related art, research on the human errors that are made by OOWs mostly consists of research on the causes of the human errors and the classification of such causes. Currently, there is no research that can be applied to ships that are actually navigating at sea. This is because it is extremely difficult and dangerous to perform experiments on ships and OOWs that are actually navigating at sea. And, even if such experiments are carried out, it would require a considerable amount of experiment cost. For such reasons, there currently exists no research applying the CR perceived by OOWs to actual ships for collision avoidance or collision prevention.
An object of the present invention, which has been devised to overcome the above-described problems and disadvantages, is to provide a ship collision avoidance method using the psychological character of a ship officer that can support avoidance (or prevention) of a ship collision by using a sense of danger felt by an officer on the watch (OOW) upon an imminent collision when encountering a ship collision situation and by using the ship domain theory.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
In order to achieve the above-described technical object of the present invention, the ship collision avoidance method using the psychological character of a ship officer according to the present invention may include a first step calculating a relative distance (RD) and a relative bearing (RB) between two ships by using information of a main ship and information of an opposite ship, a second step estimating a collision risk level (or collision level) (CL) corresponding to the relative distance (RD) and the relative bearing (RB) by using a collision risk (CR) perception of the ship officer, and modeling a Collision Risk Estimation Model (CREM) that converts the estimated results to three-dimensional (3D) coordinate data, a third step calculating a distance of a ship domain (DSD) and the collision level (CL) using the modeled Collision Risk Estimation Model (CREM), a fourth step deciding a reference value of a spatial aspect corresponding to a reference distance for determining a presence of a collision risk between two ships and a reference value of a psychological aspect corresponding to a collision level (CL) for determining a presence of a collision risk between two ships, and a fifth step comparing the relative distance (RD) with the reference value corresponding to the spatial aspect, so as to generate a ship domain (SD) warning for notifying the ship officers that the two ships are within a distance of a possible collision, or comparing a collision risk corresponding to the relative distance (CL(RD)) with the reference value corresponding to the psychological aspect, so as to generate a collision risk (CR) warning for notifying the ship officers that the collision level has reached a level of collision risk.
Preferably, in the fourth step, a distance of a ship domain (DSD) corresponding to the relative bearing (RB) may be decided as the reference value corresponding to the spatial aspect, and, among the collision levels (CLs) estimated by the Collision Risk Estimation Model (CREM), a collision level (CL) corresponding to a distance of a ship domain (DSD) (CL(DSD)) corresponding to the relative bearing (RB) may be decided as the reference value corresponding to the psychological aspect.
Preferably, in the fifth step, the relative bearing (RB) may be compared with the reference value corresponding to the spatial aspect, and, if the relative distance (RD) is greater than the reference value corresponding to the spatial aspect, the ship domain (SD) warning may be generated.
Preferably, in the fifth step, the collision risk corresponding to the relative distance (RD) (CL(RD)) may be compared with the reference value corresponding to the psychological aspect, and, if the reference value corresponding to the psychological aspect is greater than the collision risk corresponding to the relative distance (RD) (CL(RD)), the collision risk (CR) warning may be generated.
Preferably, in the second step, input variables of the Collision Risk Estimation Model (CREM) may include the relative bearing (RB) and the relative distance (RD), and output variables of the Collision Risk Estimation Model (CREM) may include the collision levels (CLs) of the collision risk (CR) being estimated for consecutive relative bearings (RBs) and relative distances (RDs).
More preferably, in the second step, the output variables of the Collision Risk Estimation Model (CREM) may further include coordinate values for indicating the collision levels (CLs) on a three-dimensional (3D) hybrid map.
More preferably, in the second step, the Collision Risk Estimation Model (CREM) may estimate the collision level (CL) corresponding to the input variables by using a probability density function (pdf) of a Generalized Extreme Value (GEV).
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:
Other objects, characteristics, and advantages of the present invention will be apparent based on the detailed description of the exemplary embodiment of the present invention, which will hereinafter be presented with reference to the accompanying drawings.
Hereinafter, the structure and operation of the exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings, and the description of the structure and operation of the present invention will be presented according to at least one exemplary embodiment of the present invention. And, therefore, the technical scope and spirit of the present invention and its essential structure and operation will not be limited only to the description of the exemplary embodiment presented herein.
Hereinafter, a preferred exemplary embodiment of the ship collision avoidance method using the psychological character of a ship officer will be described in detail.
The present invention uses a collision risk (CR) sensed by an officer on the watch (OOW) operating (or handling) the ship at an encounter situation where two ships are likely to collide with one another.
In order to estimate a CR, a Collision Risk Estimation Model (CREM) is used, and the CREM is configured by using the shape of a probability density function (pdf) of a Generalized Extreme Value (GEV) distribution.
Thereafter, a Collision Level (CL) respective to a relative bearing and a relative distance between two ships is estimated by using the CREM.
Subsequently, a CR domain corresponding to the estimated CL is marked on a 3-dimensional (3D) hybrid map, which is configured of a combination of 2-dimensional (2D) Cartesian coordinates (or rectangular coordinates) and polar coordinates and a 3D contour map.
A comparison is made between a collision risk (CR) domain and a ship domain (SD), and a difference between the two domains is calculated. Then, the calculated difference is configured as a reference value for determining a collision risk (CR). The configuration of the reference value will be described later on in more detail.
In the present invention, when two ships are sailing within a close range between one another, the probability of collision between the two ships may be determined by using a distance between the CL, which is to be sensed (or felt) by the OOWs, and the SD.
Herein, a CR of the OOW, which is generated when a ship approaches an encounter situation where two ships are likely to collide with one another, may be estimated by using the CL and the probability of collision is spatially indicated by using the SD and CL, which are marked on the 3-dimensional (3D) hybrid map.
As described above, the present invention uses physical elements (distance, speed, bearing, and so on) as well as factors spatializing the cognitive perception elements of a human being for avoiding collision.
The Ship Domain (SD) theory, which corresponds to one of the concepts for avoiding ship collision, is a physical concept for securing (or ensuring) a necessary and sufficient spatial domain in order to allow ships to avoid collision.
Diverse electronic navigation equipment supporting collision avoidance, such as a Radar, an Automatic Radar Plotting Aids (ARPA), an Electric Chart Display and Information System (ECDIS), and so on, is applied for the SD theory.
The present invention further applies Situation Awareness (SA) of an imminent collision, which is calculated through a CR that is perceived by an OOW, to the SD theory for calculating a spatial domain (or zone) between two or more ships, such as a Distance at the Closest Point of Approach (DCPA) and a Time to the Closest Point of Approach (TCPA), and so on. More specifically, the present invention provides support for allowing ships to avoid collision between one another by using the SD theory and the relationship between a CR and an SA.
Predicting the CR that is perceived by the OOW is very important. And, the CREM is used for predicting the CR.
The CR that is perceived by the OOW may be examined by conducting a survey or may be collected by measuring the heart rate and blood pressure of the OOW by attaching a specific device to the OOW.
Since the collected CR data corresponds to a discrete data format that has sampled a specific situation, CREM is used in order to output the consecutive input into a wanted data format.
The present invention may estimate consecutive Collision Levels (CLs) by using the discrete CR data respective to the consecutive input, and, then, the present invention may model a CREM for converting the estimated results to 3-dimensional (3D)-coordinate data.
Referring to
Most particularly, the CREM estimates the CL corresponding to the input variables by using a parameter of a Generalized Extreme Value (GEV) distribution, which is estimated in advance. At this point, the estimated result may have a predetermined level of error (or noise) corresponding to the RB and the RD.
Hereinafter, the process of modeling the CREM will be described in more detail.
Due to the characteristic of the sampled CR data, the present invention uses a probability density function (pdf) of the GEV distribution.
The pdf of the GEV distribution may be defined as a shape parameter γ, a location parameter μ, a scale parameter σ, and so on, for standard normal data χ, which are given in Equation (1) as shown below. Herein, the pdf of the GEV distribution of Equation (1) may be indicated in a more simplified format of GEVp(0≤p≤1), as shown in Equation (2).
The rectangular box of
A, B, and C, which are marked on the rectangular box shown in
The modeling of the CREM is carried out through 4 different process steps, which are described below.
Firstly, if a collision risk being measured at a relative distance (RD) of j (j=1, 2, 3, . . . , J) for each relative bearing i(i=1, 2, 3, . . . , 1) is indicated as CRi,j, the CRi,j corresponds to a matrix format having a dimension of I-by-J. In order to simplify the Equation of the CREM, in the CRi,j, the CR for a random i value is defined as Dj.
Step 1 (Curve Approximation)
A bth power polynomial coefficient a(Rrj), which best approaches the sample data Dj that is measured from the relative distance (RD) Rrj having a sequence length of j(j=1, 2, 3, . . . , J) is as shown in Equation (3), and, as shown in Equation (4), the Dn having a sequence length of n(n=1, 2, 3, . . . , N) may be estimated by using a(Rrj).
a(Rr1)=a1Rrjb+a2Rrjb−1+ . . . +abRrj+a(b+1) (3)
D
n
=a
1
RD
n
b
+a
2
RD
n
b−1
+ . . . +a
b
RD
n
+a
(b+1) (4)
Herein, RDn indicates a relative distance corresponding to Dn and, therefore, may be calculated as RDn=rA+rinc−Σ1n rinc, wherein rinc=(rA−rZ)/N. rA indicates a relative distance from a measurement start point, and rZ indicates a relative distance from a measurement end point (or a point indicating a maximum CR value).
Step 2 (Parameter Estimation of a Pdf for a GEV Distribution)
A parameter set {γ, μ, σ} of the pdf of the GEV distribution, which is optimal for Dn, is estimated within a search range shown in Table 1. Table 1 indicates standard normal data χw having a sequence length of w(w=1, 2, 3, . . . , W), and a search range of {γ, μ, σ} (wherein a left limit value is indicated as LT in subscript and a right limit value is indicated as RT in subscript).
By applying χw and {γ, μ, σ}, which are shown in Table 1, to Equation (2), a Pw of the pdf of the GEV distribution having a sequence length of w may be obtained (or calculated). Herein, as described in
Firstly, the pdf of the GEV distribution Pq,v,w corresponding to a point when {γq, σv} for the standard normal data χw having its sequence length w fixed to w=W is changed within the range of Table 1, is calculated by using Equation (5).
P
q,v,w
=GEV(χw=W;γq,μ,σv) (5)
Thereafter, a maximum value MaxPq,v=max(1≤w≤W)(Pq,v,w) of Pq,v,w is calculated. Then, after calculating a sequence length Lq,v=(|χLT˜χw(MaxPq,v)|)(1/Sχ)+1 starting from a left limit χLT of χw up to χw(MaxPq,v) (wherein Sχ indicates an interval of the sequences of χw shown in Table 1), Pq,v,n(n=1, 2, 3, . . . , N; N=Lq,v) corresponding to Lq,v is extracted (or calculated) by using Equation (6).
P
q,v,n
=P
q,v,w
=L
q,v) (6)
Subsequently, Dq,v,n (Equation (7)) corresponding to Lq,v is obtained (or calculated) from Dn of Equation (4). Then, after obtaining a maximum value MaxDq,v=Max(1≤n≤N)(Dq,v,n) of Dq,v,n, DPq,v,n having the same value as MaxPq,v is obtained by using Equation (8).
D
q,v,n
=D
n(n=Lq,v) (7)
DP
q,v,n=(Dq,v,n/MaxDq,v)MaxPq,v (8)
Then, a minimum relative distance MinRDq,v corresponding to the length Lq,v respective to MaxDq,v in RDn of Equation (4) is obtained by using Equation (9).
MinRDq,v=RDn(MaxDq,v)(n=Lq,v) (9)
An average error errq,v between Pq,v,n of Equation (6) and DPq,v,n of Equation (8) is calculated by using Equation (10). Thereafter, {circumflex over (q)} and {circumflex over (v)} corresponding to a point when the errq,v indicates a minimum value are calculated by using Equation (11).
err
q,v=Σn=1N(|Pq,v,n˜DPq,v,n|)/Lq,v (10)
{{circumflex over (q)},{circumflex over (v)}}=min1≤q≤Q,1≤v≤V(errq,v) (11)
More specifically, parameters of the pdf of the GEV distribution for the sample data Dj, which is measured at the relative distance Rrj are estimated by using Equation (3) to Equation (11).
Thereafter, the above-described parameter estimation process is repeated for the entire collision risk CRi,j so as to estimate {{circumflex over (q)}i,{circumflex over (v)}i} for i by using Equation (11). Then, by using the estimated {{circumflex over (q)}i,{circumflex over (v)}i}, a GEV shape parameter {circumflex over (γ)}i=γq(q={circumflex over (q)}i), a scale parameter {circumflex over (σ)}i=σv(v={circumflex over (v)}i), and a sequence length Li=Lq,v (q={circumflex over (q)}i and v={circumflex over (v)}i) are calculated. Then, by using the calculated results, Equation (12) to Equation (16) are calculated.
P
i,n
=P
q,v,n(q={circumflex over (q)}i,v={circumflex over (v)}i and n=Li) (12)
DP
i,n
=DP
q,v,n(q={circumflex over (q)}i,v={circumflex over (v)}i and n=Li) (13)
MaxDi=MaxDq,v(q={circumflex over (q)}i and v={circumflex over (v)}i) (14)
MinRDi=MinRDq,v(q={circumflex over (q)}i and v={circumflex over (v)}i) (15)
err
i
=err
q,v(q={circumflex over (q)}i and v={circumflex over (v)}i) (16)
Step 3 (Estimated Parameter Interpolation)
Since the results estimated in the above-described Step 2 correspond to discrete relative bearings θi(i=1, 2, 3, . . . , I), a model parameter for consecutive bearings RBu(u=1, 2, 3, . . . , U) is required.
In the present invention, consecutive parameters are estimated by using interpolation, which will hereinafter be described in detail.
The interpolation may use a Matlab code
‘Outputs=interp1(Var1,Var2,Var3,‘pchip’)’.
‘interp1’ indicates one-dimensional (1D) interpolation, and Var1, Var2, and Var3 represent input variables. Also, ‘pchip’ indicate Piecewise Cubic Hermit (PCH) interpolation. The present invention applies the PHC interpolation in order to maintain the characteristics of the given data as much as possible.
Table 2 shows a Matlab code that is applied to the PHC interpolation being used for acquiring consecutive model parameters.
Step 4 (Calculation for Consecutive Bearings)
The relative bearing RBu may be estimated by using the interpolation result shown in Table 2.
Firstly, the pdf {tilde over (P)}u,w (0≤P≤1) of the GEV distribution for the standard normal data χw having a length of w number of sequences is calculated by using Equation (17), and the maximum value Max{tilde over (P)}u,w of {tilde over (P)}u,w is calculated by using Equation (18). And, a sequence length Lu starting from a left limit χLT of χw to a point χw(Max{tilde over (P)}u,w) corresponding to a Max{tilde over (P)}u,w of χw is calculated by using Equation (19).
{tilde over (P)}
u,w
=GEV(χw;{tilde over (γ)}u,μ,{tilde over (σ)}u) (17)
Max{tilde over (P)}u=max(1≤w≤W)({tilde over (P)}u,w) (18)
L
u=(|χLT˜xw(Max{tilde over (P)}u)|)(1/Sχ)+1 (19)
{tilde over (P)}u,w of Equation (17) calculates the {tilde over (P)}u,n(n=1, 2, 3, . . . , N; N=Lu), which corresponds to w=Lu, and, by using Equation (20) shown below, u,n(0≤u,n≤1.0) having a maximum value of 1.0 is calculated.
u,n=(({tilde over (P)}u,n/Max{tilde over (P)}u)(Maxu/MaxCR)) (20)
Herein, Max{tilde over (P)}u indicates a maximum value of {tilde over (P)}u,n, and MaxCR indicates a maximum value of the collision level (CL) in the original data (or initial data).
u,n of Equation (20) corresponds to a collision level (CL) that is to be applied for visualizing the CR. Finally, a parameter set {Xu,n, Yu,n, u,n} of 3D coordinates for forming the CR domain is calculated by using coordinate values, which are calculated by using Equation (21), and the u,n.
Herein, radRBu=(90−RBu/180)π (radian). And, in an x-y Cartesian coordinate system, the bearing of 90° (i.e., x=0,y=+Y) is determined as the reference bearing 0°, and π=3.14.
The Ship Domain (SD) data being applied to the CREM modeling, and the Emotional Sensitivity (ES) data and the Perceived CR (PCR) data will hereinafter be described in detail.
The SD data is used for defining free space that is needed by a ship in order to avoid collision in an encounter situation of a ship collision. Herein, the SD data corresponds to distance data calculating a theoretical concept (or idea). The ES data is used for measuring a difficulty level for ship OOWs to handle (or operate) their ships in limited waters Herein, the ES data corresponds to data that is measured for an encounter situation of a ship collision by using a ship handling simulator. The PCR data is used for measuring a sense of risk that is perceived by the OOWs during a situation of an imminent collision.
The SD data corresponds to data converting a measured SD scale to distances respective to consecutive bearings. More specifically, the SD data corresponds to a data format, wherein a Phantom ship is positioned at a center (or center point) of a circle having a radius of Cr, and, then, a Real ship (or actual ship) is offset (or deviated) to a predetermined distance from the center point along the x-axis and the y-axis.
The procedure for calculating the SD data will now be described in detail.
Firstly, n number of Cartesian coordinate data sets {Xn,Yn} are calculated by using a Matlab code ‘{Xn,Yn}=pol2cart(θradn, Cr)’, which converts polar-coordinates to Cartesian coordinates. Herein, θradn indicate radian-unit bearing that is calculated for bearing θn(0≤θn≤360) with a 360-degree system for marking bearings by using Equation (22).
Herein, θn(n=1, 2, 3, . . . , N) represent N number of bearings that are divided from 0° to 360°, and π=3.14.
The SD data set {Xdatan,Ydatan} may be calculated as shown below.
Herein, Xoffset indicates an offset value (287.06 m) of the x-axis, and Yoffset indicates an offset value (864.27 m) of the y-axis.
An Emotional Sensitivity (ES) data corresponds to data measuring a level of danger that is perceived by an OOW in a ship collision encounter situation by using a ship handling simulator.
In
PCR data corresponds to data that is acquired by referring to a CRPI, which is measured in an actual naval vessel.
The estimation results for the model variable of the CREM will now be described. Table 3 indicates {circumflex over (γ)}i and {hacek over (σ)}i, which are estimated by inputting the ES data and the PCR data to the CREM. In other words, Table 3 indicates estimated results for discrete relative bearings RBi(i=1, 2, 3, . . . , I), which are estimated by using Equation (12) to Equation (16).
Referring to the upper boxes of
Meanwhile, the analysis results for the CR domain, which is estimated by the modeled CREM will hereinafter be described in more detail.
In
Referring to the ES data shown in the left-side graph of
Therefore, in both the ES data and the PCR data, the same collision risk level is indicated earlier (or faster) in a ship encounter situation occurring at the relative bearing 135° as compared to a ship encounter situation occurring at another relative bearing.
Referring to the ES data shown in the left-side graph of
Conversely, in case of the right-side graph of
In
The left-side graph of
The right-side graph of
The results of comparing the above-described SD with the CR domains using the ES and the PCR may be summarized as described below. In case of the SD and the CR domain for the ES data, although the SD is assigned with a larger space near the relative bearing 30°, in case of the CR domain, a larger collision level space is indicated near the relative bearing 135°. Similarly, in case of the SD and the CR domain for the PCR data, the distribution of the collision level is concentrated in the area near the relative bearing 135°. In case of both the CR domain for the ES data and the CR domain for the PCR data, each of the collision levels having the same size near the relative bearing 135° is indicated at a longer distance. Therefore, a larger space is assigned for the SD near the relative bearing 30°, and, in case of the CR domain for the ES data and the PCR data, the collision risk level is more widely distributed near the relative bearing 135°.
If the ES data and the PCR data corresponding to the CR domain are marked on the 3D coordinates by using the above-described modeled CREM, the results shown are opposite to those of the SD. More specifically, a large space is formed near the relative bearing 30° for the SD, and a larger perception space is formed near the relative bearing 135° for the CR domain. This indicates that a geological space of the SD for avoiding an actual (or real) ship collision is different from a psychological space of the CR, which is perceived by the OOW. And, therefore, this indicates that the psychological space of the OOW handling (or operating) the ship and the geological space for avoiding an actual ship collision should both be taken into consideration.
Hereinafter, an example of configuring (or setting up) a reference value for determining a collision risk and determining a collision risk by using the reference value will be described. The present invention uses two different types of reference values, which include a reference value corresponding to the spatial aspect and a reference value corresponding to the psychological aspect.
In order to set up the reference value corresponding to the spatial aspect, a reference distance for determining a risk of collision between two ships should be decided. In the present invention, a distance of the SD for a relative bearing is decided as a reference distance (DSD). Thereafter, when comparing the relative distance (RD) between two ships with the corresponding reference value, if the compared result indicates RD>DSD, it is determined that a risk of collision exists.
In order to set up the reference value corresponding to the psychological aspect, a reference value of a Collision Level (CL) for determining a risk of collision between two ships should be decided. In the present invention, among the CLs that are estimated by the above-described CREM, a CL corresponding to a reference distance (DSD), which is decided as a distance of the SD for the relative bearing, is decided as the reference value (CL(DSD)) of the collision level. Thereafter, the reference value corresponding to the psychological aspect is compared with a CL corresponding to the relative distance, i.e., the CL(RD), and, in case the compared result indicates CL(DSD)>CL(RD), it is determined that the collision risk level has exceeded the reference value.
Hereinafter, a method for configuring a warning based on the results of determining collision risk by using a reference value will be described in detail.
Referring to
Case 1: This corresponds to a case where the collision encounter situation between the main ship and the opposite ship occurs at a relative bearing of 40°. Herein, the relative distance between the two ships is decreased, and an SDW1 (hereinafter, this term will indicate an SD warning that is generated for the encounter situation of Case 1) is generated at the moment when the two ships pass the DSD. Thereafter, as the relative distance between the two ships continues to decrease, a CRW1 (hereinafter, this term will indicate a CR warning that is generated for the encounter situation of Case 1) is generated at the moment when the two ships pass the collision risk level of CL(DSD). Therefore, the OOW is capable of hearing the two warnings. Firstly, the OOW may acknowledge through the SDW1 that the relative distance between the two ships has decreased (or has become shorter) to a level that requires collision avoidance actions and may carry out ship handling actions for avoiding collision. If the OOW fails to carry out the collision avoidance actions, a second warning (CRW1) is generated so as to allow the OOW to acknowledge once again that a ship collision is imminent.
If the DSD as well as the CL(DSD) are applied, even though the OOW may have failed to carry out the collision avoidance actions because of using only the DSD, since the CRW1 is generated, another opportunity for carrying out the collision avoidance actions is given to the OOW not to mention that the OOW's level of attention (or alertness) may be increased. Accordingly, an accident that is caused by collision may be prevented.
Case 2: This corresponds to a case where the collision encounter situation between the main ship and the opposite ship occurs at a relative bearing of approximately 85°. In this case, when the relative distance between the two ships decreases, an SDW2 and a CRW2 are generated at the same time at the moment when the two ships pass the DSD and the CL(DSD). Since the warnings may notify the OOWs of the spatial distance that is required for avoiding collision as well as the danger level of collision risk, the attention and alertness of the OOWs may also be enhanced at the same time.
Case 3: This corresponds to a case where the collision encounter situation between the main ship and the opposite ship occurs at a relative bearing of approximately 140°. Characteristically, warnings are generated in an order that is opposite to that of Case 1. In this case, when the relative distance between the two ships decreases, a CRW3 is generated at the moment when the two ships pass the CL(DSD), thereby notifying the OOWs of the risk of a collision. Then, as the relative distance between the two ships continues to decrease, an SDW3 is generated at the moment when the two ships pass the DSD, thereby notifying the OOWs that it is presently a time (or moment) for carrying out the collision avoidance actions. Accordingly, by increasing the attention and alertness of the OOWs through the CRW3 before the OOWs carry out the collision avoidance actions, the failure to carry out the collision avoidance actions when the SDW3 is generated may be prevented.
Referring to
Thereafter, by using the information (AIS data) on the opposite ship and the information on the main ship, a relative distance (RD) and a relative bearing (RB) between the two ships are calculated (Step 2).
A collision level (CL) using a distance of the SD (DSD) and the modeled CREM is calculated (Step 3).
When comparing the RD with the DSD, if the RD is greater than the DSD, an SD warning notifying that the distance has a possibility of ship collision is generated (Step 4 and Step 5), and, then, appropriate collision avoidance actions (or operations) respective to the generated warning are performed (Step 6).
If the RD is not greater than the DSD, the above-described process steps (Step 1 to Step 3) are repeated.
Meanwhile, when further comparing the CL(DSD) and the CL(RD), if the CL(DSD) is greater than the CL(RD), a CR warning notifying that the collision risk level has exceeded the reference value is generated (Step 4 and Step 5), and, then, by concentrating a maximum level of attention, a situation perception level is increased (Step 6).
If the CL(DSD) is not greater than the CL(RD), the above-described process steps (Step 1 to Step 3) are repeated.
As described above, the ship collision avoidance method using a psychological character of a ship officer has the following advantages.
According to the present invention, since the ship domain theory and the psychological Collision Level (CL) of the officer on the watch (OOW) are used in combination, as compared to the conventional method, which only applies the ship domain theory, by reducing the probability of failing to carry out collision avoidance actions (or operations), the probability of achieving collision avoidance or collision prevention may be increased.
The reliability of the OOW's execution of collision avoidance actions (or operations) may be enhanced by using a plurality of warning functions using spatial and psychological ship collision domains.
Since the collision warning is generated necessarily and sufficiently as well as mutually between ships, it shall be possible to achieve an excellent collision avoidance through a combination of the OOW's acute attention and prompt collision avoidance actions.
Since the psychological aspect of the sense of collision risk felt by the OOW is applied to the collision avoidance method, human errors may be actively prevented.
A minimum distance required for carrying out the collision avoidance actions may be known, and the risk (or danger) of collision respective to the average relative bearing (RB) and relative distance (RD) that are perceived (or recognized) by the OOWs may also be known.
Since a physical space as well as a psychological space can be secured, the present invention may also be applied to the development of next generation navigation systems.
By applying the present invention to a traffic controller of a Vessel Traffic System (VTS), which is stationed on land, this may contribute to the prevention of accidents caused by a lack of attention and alertness of the traffic controllers. Most particularly, when the present invention is applied to a VTS that is required to control a plurality of ships at the same time, since the collision risk between the ships can be automatically reported (or notified) to the traffic controller, an active traffic support may be provided.
Although the present invention has been described according to the preferred exemplary embodiment of the present invention, it will be apparent to those skilled in the art that various modifications and variations can be made in this specification without departing from the spirit or scope of this specification.
Thus, it is intended that this specification covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. It is also apparent that such variations of this specification are not to be understood individually or separately from the technical scope or spirit of this specification, and all differences lying within the scope of the appended claims and their equivalents should be interpreted as being included in the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0016715 | Feb 2018 | KR | national |