The present invention is directed to an insulation panel and insulating system, and in particular to an insulation panel and system configured for use in shipping containers.
Wall systems that require finishing and/or insulation are well known and take on numerous configurations such as masonry, concrete modular units, poured concrete walls, wood frameworks and other common structural systems that generally provide satisfactory installation and support. Often, walls require insulation and may also require finishing over the insulation. Moreover, a vapor barrier should often be established to prevent or minimize mold and moisture damage and resist rusting or other corrosion. Moreover, such systems should avoid high thermal conductivity and resist rusting or other corrosion.
Various types of insulation systems have been developed and are widely used including fiberglass insulation. However, fiberglass insulation is susceptible to water damage and mold if moisture is present. In addition, the thickness required for adequate insulation may decrease the overall size of the space due to the added depth of the fiberglass layer. Fiberglass insulation is also difficult to handle and requires special gloves and a respirator. Many types of foam insulation have also been developed and utilized for many applications. However, such foam types of insulation are often open foam so that the material allows moisture to pass through and may retain some moisture. Common stud and foam insulation systems also suffer from difficult installation as may be required for wiring, switches, tubing and other components along with the insulation.
To overcome such problems, systems have been developed that provide an insulation layer using panels that align and attach with one another and mount to the wall. Such a panel type system is shown in U.S. Pat. No. 8,635,824 entitled INSULATION PANEL SYSTEM and issued to Scherrer. Such systems were sold under the commercial name INSOFAST and have proven to be very successful in providing superior insulation systems provides multiple advantages over prior art systems. The INSOFAST panel systems are widely adapted to many types of applications and able to be used for radon abatement under adsorptive claddings, under exterior insulation finish systems (EIFS), for retrofitting drain and dry insulation for exterior existing structures, for retrofit of drain and dry insulation for interior of existing structures. The system has been used in existing flooring, against foundation walls, above grade concrete or frame construction on either the interior or exterior and can be matched up to existing frame walls for extra insulation. The panels can be used as an insulation board when mounted on the exterior and can be used on top of existing floors or plaster walls, even if damaged, or on ceilings. The system might may also be used to add additional insulation to insulated concrete forms and can be used in multiple layers and used in precast applications and can snap in for chases to keep the chase ways open. This system forms a weather resistant barrier that does not require tape or adhesives and has self-sealing attachment points with the internal studs making installation simple and reliable.
Although the INSOFAST system of U.S. Pat. No. 8,635,824 has been successful for a wide range of uses, particular applications require a different approach. It can be appreciated that large shipping containers may have cargos or applications that require insulation. Moreover, such shipping containers have become popular for use as tiny homes. Their strength and standard sizes of shipping containers also make them suitable for modular construction with multiple shipping containers joined to form a larger structure. Use of the shipping containers for building construction also typically requires insulation. Standard shipping containers are typically made of steel and have a corrugated type wall structure. Such corrugated walls provide alternating spaced apart recesses and protrusions that reduce the effectiveness of planar insulation systems due to the gaps. Moreover, the corrugated type walls of shipping containers provide for more difficult installation due to the spaced apart recesses of the corrugations. To address such installation challenges, planar systems such as the INSOFAST insulation system have been supplemented with strips of insulation material cut and trimmed to fill in the spaces formed by the corrugated wall and therefore eliminate the gaps. Although this approach provides satisfactory insulation performance, installation can be challenging and labor intensive as strips must be cut and installed along with the planar panels to eliminate the gaps.
It can be appreciated that a new and improved system is needed that provides for superior insulation of corrugated walls such as are present with shipping containers. Such a system should fill the gaps formed by a corrugated wall structure. Moreover, such a system should provide for obtaining a planar outer exposed surface for easy mounting of additional layers and/or finishing. Such a system should also achieve water, thermal and vapor control layers or barriers and should provide for easily forming chases and channels for wiring, plumbing and other structure. Such a system should be easy to install and provide alignment between adjacent panels laterally and vertically. The present invention addresses these as well as other problems associated with insulation of corrugated walls.
The present invention is directed to a wall insulating system and in particular to a wall insulation and finishing system suitable for use with standard shipping containers having corrugated walls. The present invention utilizes foam insulating panels that are connected to form an insulation layer with a planar outer face. The panels include mounting stud type elements molded into the panels.
According to the present invention, standard shipping containers provide alternating spaced apart recesses and protrusions that are difficult to effectively insulate due to the gaps. Moreover, the corrugated type walls of shipping containers increase installation difficulty due to the spaced apart recesses of the corrugations. Closed cell foam insulation panels of the present invention have an inner mounting face that is complementary to the corrugated surface of shipping container walls. The panels form an exposed planar surface that may be painted, wallpapered, paneled or finished using other well-known techniques. The panels have molded in mounting elements that are spaced apart at uniform on center spacing generally corresponding to spacing for standard wood studs and allow for easily fastening with glue and conventional hardware to the shipping container wall. The mounting elements also provide for attachment of drywall, wood paneling and other inner finishing type layers to the insulating panel layer.
The panels are generally made of water impervious foam material so that the panels are lightweight and easily transported. In typical embodiments, the panels are 24 inches×approximately 44 inches or 16 inches by approximately 44 inches, allowing for easily handling the panels at jobsites. The panels have a tongue and groove configuration along the edges for connecting to adjacent panels both vertically and horizontally to create a continuous insulating layer for an entire wall. The panels include alignment tabs and complementary notches along the top and bottom edges to ensure a proper engagement and placement.
The panels also include channels, passages and/or chases for routing wiring, tubing or other elements. A small strip is formed along the edges so that when panels are connected in an edge to edge relationship, a channel or chase is formed continuing horizontally along adjacent panels between the ends of the ridges of adjacent panels. With this configuration, wiring and other elements may be routed both horizontally and vertically along the width and height of a wall without having to modify the panels. The edges of the panels also have drainage channels so that water and moisture are directed back toward each face of the panel keeping water from migrating through the panel in either direction. The panels also include cutting channels so that clean, straight cuts may be simply and quickly made so that the panels have clean straight edges.
The mounting elements are molded into the panels in an embedded configuration in one embodiment. The mounting elements are generally elongate members with a somewhat “H” shaped cross-sectional profile. The first portion extends perpendicularly outward from its center section, which abuts a series of center connecting ribs. The second portion extends from an opposite end of the connecting ribs in a substantially perpendicular configuration with a very slight obtuse “V” shaped profile. The first portion extends to a first face of the panel or just below the first face and includes a channel or channels to receive and recess screw heads used to attach the panels. The second portion also extends to a second face of the panel and may include glue channels and also provides for receiving adhesive type materials. The mounting elements are preferably molded of lightweight plastic material that is impervious to rusting and other corrosion or deterioration and that can provide a foundation for attaching mounting hardware and also provide support for the panel. The mounting elements are non-conductive and do not produce any galvanic corrosion such as other steel framing that is connected to a steel shipping container. The mounting elements fasten in such a manner as to not puncture the shipping container walls that may initiate a future leak. The mounting elements are thermally non-conductive and provide a thermal break from the steel container wall to the interior finishes, unlike steel Z-furring that will lose as much as 50% or the R-value through thermal bridging.
To mount to corrugated walls, such as side walls of a shipping container, the inner mounting face of each panel has a corrugated inner facing surface that is complementary to the corrugated surface, such as the side walls of shipping container. The corrugated mounting surface includes vertically extending protruding portions alternating with vertically extending recesses. The protruding portions include a planar outer face and tapering connection surfaces that form a transition from the planar face of the inner recess to the planar face of the protruding portion. The inner recessed surface and the planar face of the protruding portions are generally parallel to one another and to the exposed surface on the opposite side of each panel. The protruding portions and the recesses extend generally vertically and configured to align with the complementary portions of the corrugated walls of the shipping container. The configuration of the insulation panels provides a tight fit against the corrugated walls without leaving gaps.
The insulation system is easily installed. The panels are installed by gluing or conventional mechanical fasteners to corrugated walls. Panels are placed starting at a lowermost tier and usually in one corner and working horizontally across the width of a wall. The tongues and grooves form connections between adjacent panels so that a continuous water impervious layer is achieved. The panels of each level are typically offset relative to adjacent panels above and below, but are correctly positioned and spaced by the alignment tabs and notches. Moreover, the protruding portions and recesses of the panels are complementary and mate with the corrugated wall and are correctly positioned through the alignment tabs and notches of the panels. Construction of the insulating layer continues in a level by level configuration until reaching the top of the wall. The panels may be trimmed to remove the tongue and grooves from the edges abutting the floor, ceiling and corners for continuous total coverage of the structural wall. After the glue dries, further hardware may be used for mounting to the load bearing wall. Drywall, paneling or other layers may then be attached using conventional hardware to the mounting elements. It can be appreciated that no special skills or special tools are needed for installation. Electrical boxes and other devices may be installed by simply cutting out the portions of a panel and connecting to the wiring or other elements extending through the channels formed by the panels.
The present invention is lightweight, durable, easy to install, long lasting, has improved insulation attributes, is inexpensive, can be used for retrofit applications and minimizes common drawbacks of traditional construction such as mold, water damage and other problems associated with the prior art. The system uses panels that fasten to a structural wall and easy to cut with a conventional knife for individually sizing the panels or cutting additional chases or channels as the panels do not have a metal layer that is thermally conductive or other material that is difficult to cut. The panels have built in utility chases, drainage channels and inter-panel alignment without using special tracks or plates. It can be appreciated that some local ordinances may prohibit the exterior of a shipping container used in constructing a building from being visible. The integrated mounting elements of the insulation system of the present invention provide for easy attachment of conventional exterior claddings.
These features of novelty and various other advantages that characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings that form a further part hereof, and to the accompanying descriptive matter, in which there is illustrated and described a preferred embodiment of the invention.
Referring now to the drawings, wherein like reference letters and numerals indicate corresponding structure throughout the several views:
Referring now to the drawings and in particular to
Shipping containers 1000 are generally rectangular with a floor 1002, side walls 1004, doors 1006, an end wall 1008 and a roof 1010. A standard container is typically 40 feet or 20 feet long, 8 feet 6 inches high and 8 feet wide. Shipping containers are generally made of metal with at least the side walls 1004 and the end wall 1008 configured with a corrugated cross-section to increase the strength of the walls. The corrugations typically have a depth of 1.25 inches up to 2 inches. Corner posts 1012 provide added support for the container 1000 and sufficient support for lifting the container. Bottom frame members 1014 may include openings 1016 for forklift tines or straps.
The insulating system 100 is formed of interconnected panels 120, described hereinafter, that mount to the walls 1004 with glue or conventional fasteners. A finishing layer, such as paneling, drywall or other finishing treatments mounts with fasteners, glue or other conventional mounting techniques to the insulating panels 120. For some applications, a coating such as paint, wallpaper or other final, exposed material that is visible may cover certain finishing layers, such as drywall. The system of the present invention provides for elimination of the conventional stud framing and roll-type insulation being added to a shipping container 1000 and provides improved R-value in a thinner layer, adding floor space and volume to the finished interior of a shipping container. In addition, the present invention is less expensive and easier to install than prior conventional building systems and techniques.
The insulating system 100 is formed from interconnected rectangular insulating panels 120 mounted in an edge-to-edge relationship. As shown in
Referring again to
The panels 120 also include mounting elements 150 that serve as studs embedded into the panels. In one embodiment, each panel 120 includes two embedded mounting elements 150. The mounting elements 150 extend vertically when the panels 120 are installed. The mounting elements 150 may be placed at conventional spacing such as at 16 inch (41 cm) centers or varying on center spacing such as approximately 22 inch centers as is typical with wood stud construction. The mounting elements 150 extend to a first face of the panels 120 and provide a surface for gluing as well as receiving conventional fasteners such as bolts, screws and/or nails. The mounting elements 150 are lightweight, but provide rigidity and strength to the panels 120.
As shown in
Referring again to
As shown in
The mounting elements 150 are spaced apart generally at common intervals such as 8 inches, 12 inches or 16 inches, or at 11 inches or 22 inches or other standard spacing for shipping container corrugations, and provide a lightweight yet durable surface for receiving mounting hardware, as discussed above. The mounting elements 150 are also lightweight and molded and impervious to water for durable and inexpensive construction. It can be appreciated that the system of the present invention reduces the likelihood for water damage, mold and other problems that conventional systems are prone to, especially when the shipping container 1004 is in a damp environment. It can further be appreciated that the present invention provides for easy trimming and cutting with a hand saw or simple knife. The materials used are not irritating to skin or eyes and do not require special gloves for handling as is needed for fiberglass systems. The materials are lightweight and of a size that is easier to handle than typical long wood studs and 4 feet by 8 feet sheets of drywall. Drywall does not need to be aligned with studs as is required with conventional techniques. Installation is much quicker and does not require special skills or tools.
The insulating system 100 of the present invention is also easy to install. Little preparation is needed but drain tile, if necessary, is installed before the system is in place. A bead of construction adhesive is placed in the gluing channels 153 on the studs 150 on each panel 120. Installation generally starts in a lower corner of the wall 1004 with the panel 120 simply pressed onto the inner face of a side wall 1004 or end wall 1008. The panel 120 is then secured with an adhesive or conventional mounting hardware. Installation continues with the panels 120 until a level of panels 120 is completed. The panels 120 of an adjacent level are aligned with vertically extending tongues 140 inserting into corresponding grooves 142 until a bottom row of panels 120 extends across the wall. The panels 120 of the next row are generally offset from the previous row and placed starting along one edge and working along the row in a similar manner. The mounting elements 150 are aligned by the alignment tabs 144 inserting into the corresponding notches 146. The panels 120 are configured so that the passages 128 must align. Construction continues along horizontal rows until the entire surface of a wall is covered. The corners are accommodated by cutting off the tongues and/or grooves and butting the panels 120 together.
Spaces for receiving electrical boxes can be cut into the panels 120 using a standard drywall keyhole saw. Wiring and other elements can be run through the insulation system panels 120 by leading the wiring through the passages 128 and the channels 126. When the panels 120 have been installed, the glue is generally allowed to dry for a period of time such as 24 hours. Once the glue sets, the drywall can be applied to the planar outer face 122 by using standard drywall screws attaching to the mounting elements 150. The insulation system 100 is finished in the same manner as conventional walls with mud and tape used with the drywall and an inner layer such as paint or wallpaper applied over the drywall. In some applications, paneling or other materials may be used rather than drywall. The method is typically faster and easier with less skill and fewer tools required than conventional construction techniques.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
2169254 | Kotrbaty | Aug 1939 | A |
2205725 | Kavanagh | Jun 1940 | A |
2777318 | Kinsman | Jan 1957 | A |
2836266 | Leeser | May 1958 | A |
2950575 | Hellwig | Aug 1960 | A |
3062337 | Zittle | Nov 1962 | A |
3357146 | Gartrell | Dec 1967 | A |
3362120 | Warren | Jan 1968 | A |
3979867 | Sowinski | Sep 1976 | A |
4038798 | Sachs | Aug 1977 | A |
4163349 | Smith | Aug 1979 | A |
4244151 | Seem | Jan 1981 | A |
4288962 | Kavanaugh | Sep 1981 | A |
4333290 | Koberstein | Jun 1982 | A |
4375741 | Paliwoda | Mar 1983 | A |
4375742 | Paliwoda | Mar 1983 | A |
4429503 | Holliday | Feb 1984 | A |
4494348 | Kastelic | Jan 1985 | A |
4495741 | Pasiecznik | Jan 1985 | A |
4574549 | Holcombe | Mar 1986 | A |
4625486 | Dickinson | Dec 1986 | A |
4637187 | Campbell | Jan 1987 | A |
4769963 | Meyerson | Sep 1988 | A |
4811537 | D'Epenoux | Mar 1989 | A |
4862660 | Raymond | Sep 1989 | A |
4953334 | Dickens | Sep 1990 | A |
5279089 | Gulur | Jan 1994 | A |
5279091 | Williams et al. | Jan 1994 | A |
5758464 | Hatton | Jun 1998 | A |
5822940 | Carlin et al. | Oct 1998 | A |
5893248 | Beliveau | Apr 1999 | A |
6073410 | Schimpf et al. | Jan 2000 | A |
6076315 | Kondo | Jan 2000 | A |
6526710 | Killen | Mar 2003 | B1 |
6629392 | Harrel et al. | Oct 2003 | B1 |
6725616 | Pease | Apr 2004 | B1 |
6892507 | Pease | May 2005 | B1 |
7032356 | Layfield | Apr 2006 | B2 |
7543419 | Rue | Jun 2009 | B2 |
7670527 | Malis | Mar 2010 | B2 |
7963080 | Bowman | Jun 2011 | B1 |
8046971 | Lima | Nov 2011 | B2 |
8635824 | Scherrer | Jan 2014 | B2 |
20030140588 | Sucato, Jr. | Jul 2003 | A1 |
20030140592 | Fjeld | Jul 2003 | A1 |
20050204697 | Rue | Sep 2005 | A1 |
20050223669 | Cymbala et al. | Oct 2005 | A1 |
20080168728 | Scherrer | Jul 2008 | A1 |
20100325999 | Devalapura | Dec 2010 | A1 |
20110252728 | Scherrer | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
0492652 | Jul 1992 | EP |
2016018007 | Feb 2016 | WO |
WO2016018007 | Feb 2016 | WO |
Entry |
---|
International Search Report for corresponding International Patent Application No. PCT/US2018/021780 dated Jun. 15, 2018. |
Number | Date | Country | |
---|---|---|---|
20180273291 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62470021 | Mar 2017 | US |