Aspects of this document relate generally to a shipping pallet wrapping system, and more specifically to a shipping pallet wrapping system with an improved adjustment arm for increased durability and functionality.
Some conventional pallet wrapping apparatuses include adjustment arms attached to a support bar through a bracket and hexagonal nut screws. However, these adjustment arms are susceptible to failure due to the stresses regularly experienced during use. In addition, adjusting these adjustment arms requires significant time and specialized tools. Thus, a need exists for an improved adjustment arm with increased durability and functionality.
Aspects of this document relate to a shipping pallet wrapping system comprising a support bar extending up from a base, the support bar having a channel extending parallel to a length of the support bar for a majority of the length of the support bar, and at least two adjustment arms coupled to the support bar through the channel and configured to narrow a width of a stretch film for wrapping a palletized load, each of the at least two adjustment arms comprising a captive nut positioned within and configured to translate along the channel, wherein the captive nut comprises a first threaded hole extending therethrough and the channel has a lip configured to retain the captive nut within the channel, an externally threaded stud having a fixed end threadedly coupled with the captive nut and a free end extending away from the support bar perpendicular to the support bar, a guide base having a first side with a raised central ridge protruding into the channel, a second side with a retention barrier, and a stud aperture extending through the first side and the second side, wherein the stud extends through the stud aperture and the retention barrier comprises a raised lip surrounding the stud aperture, a guide having a cylindrical body with a first end nested within the retention barrier and a second end distal to the first end, a central aperture extending through a center of the cylindrical body and aligned with the stud aperture of the guide base, and a support flange extending radially outward from the second end of the cylindrical body, the support flange having a recess, wherein the stud extends through the central aperture, a sleeve surrounding the cylindrical body and configured to rotate freely about the cylindrical body, and an adjustment knob nested within the recess of the support flange, the adjustment knob having a first side with a second threaded hole aligned with the central aperture and the stud aperture and threadedly coupled with the free end of the stud, and a second side with a grip configured to facilitate rotation of the adjustment knob by a user, wherein each of the at least two adjustment arms is configured to tighten onto the support bar when a corresponding adjustment knob is rotated in a first direction and to loosen off of the support bar when the corresponding adjustment knob is rotated in a second direction opposite the first direction, and wherein a location of each of the at least two adjustment arms along the channel is adjustable.
Particular embodiments may comprise one or more of the following features. The shipping pallet wrapping system may further comprise a roller separated from the support bar and extending up from the base parallel to the support bar, wherein the roller is configured to guide the stretch film to pass between the at least two adjustment arms. The shipping pallet wrapping system may further comprise at least one spool extending up from the base and supporting at least one roll of the stretch film on a first side of the support bar, the at least one roll of stretch film configured to supply the stretch film to the at least two adjustment arms. The shipping pallet wrapping system may further comprise a pre-stretch carriage on a second side of the support bar, the pre-stretch carriage supported by the base and configured to receive the stretch film from the at least two adjustment arms and stretch the stretch film in preparation for wrapping the palletized load.
Aspects of this document relate to a shipping pallet wrapping system comprising a support bar extending from a base, the support bar having a channel extending parallel to a length of the support bar for a majority of the length of the support bar, and at least two adjustment arms coupled to the support bar and configured to narrow a width of a stretch film for wrapping a palletized load, each of the at least two adjustment arms comprising a captive nut positioned within and configured to translate along the channel, wherein the captive nut comprises a first threaded hole extending therethrough and the channel is configured to retain the captive nut within the channel, a threaded stud having a fixed end threadedly coupled with the captive nut and a free end extending away from the support bar, a guide base adjacent the support bar, the guide base having a stud aperture extending through the guide base, wherein the stud extends through the stud aperture, a guide having a cylindrical body with a first end adjacent the guide base and a second end distal to the first end, a central aperture extending through a center of the cylindrical body and aligned with the stud aperture of the guide base, wherein the stud extends through the central aperture, a sleeve surrounding the cylindrical body and configured to rotate freely about the cylindrical body, and an adjustment knob having a second threaded hole aligned with the central aperture and the stud aperture and threadedly coupled with the free end of the stud, wherein a location of each of the at least two adjustment arms along the channel is adjustable.
Particular embodiments may comprise one or more of the following features. A first side of the guide base may have a raised central ridge protruding into the channel. A second side of the guide base may have a retention barrier with a raised lip surrounding the stud aperture, wherein the first end of the cylindrical body of the guide is nested within the retention barrier. The guide may further have a support flange with a recess, the support flange extending radially outward from the second end of the cylindrical body, wherein the adjustment knob is nested within the recess of the support flange. The adjustment knob may further have a grip configured to facilitate rotation of the adjustment knob by a user. Each of the at least two adjustment arms may be configured to tighten onto the support bar when a corresponding adjustment knob is rotated in a first direction and to loosen off of the support bar when the corresponding adjustment knob is rotated in a second direction opposite the first direction.
Aspects of this document relate to a shipping pallet wrapping system comprising a support bar extending from a base, and at least one adjustment arm coupled to the support bar and configured to narrow a width of a stretch film for wrapping a palletized load, each of the at least one adjustment arm comprising a captive nut coupled to and configured to translate along the support bar, a stud having a fixed end coupled with the captive nut and a free end extending away from the support bar, a guide having a cylindrical body with a central aperture extending through the cylindrical body, wherein the stud extends through the central aperture, and an adjustment knob aligned with the central aperture and coupled with the free end of the stud, wherein a location of each of the at least one adjustment arm along the support bar is adjustable.
Particular embodiments may comprise one or more of the following features. The shipping pallet wrapping system may further comprise a guide base having a first side adjacent the support bar, a second side opposite the first side, and a stud aperture extending through the first side and the second side, wherein the stud extends through the stud aperture. The first side of the guide base may have a raised central ridge protruding toward the support bar. The second side of the guide base may have a retention barrier with a raised lip surrounding the stud aperture, wherein the first end of the cylindrical body of the guide is nested within the retention barrier. The shipping pallet wrapping system may further comprise a sleeve surrounding the cylindrical body and configured to rotate freely about the cylindrical body. The guide may further have a support flange with a recess, the support flange extending radially outward from a second end of the cylindrical body distal to the support bar, wherein the adjustment knob is nested within the recess of the support flange. Each of the at least one adjustment arm may be configured to tighten onto the support bar when a corresponding adjustment knob is rotated in a first direction and to loosen off of the support bar when the corresponding adjustment knob is rotated in a second direction opposite the first direction. The shipping pallet wrapping system may further comprise a pre-stretch carriage on a second side of the support bar, the pre-stretch carriage supported by the base and configured to receive the stretch film from the at least one adjustment arm and stretch the stretch film in preparation for wrapping the palletized load. The shipping pallet wrapping system may further comprise at least one spool extending from the base and supporting at least one roll of the stretch film on a first side of the support bar, the at least one roll of stretch film configured to supply the stretch film to the at least one adjustment arm. The shipping pallet wrapping system may further comprise at least one blade positioned between the at least one roll of the stretch film and the at least one adjustment arm, wherein the at least one blade is configured to cut the stretch film as the stretch film moves from the at least one spool to the at least one adjustment arm.
The foregoing and other aspects, features, applications, and advantages will be apparent to those of ordinary skill in the art from the specification, drawings, and the claims. Unless specifically noted, it is intended that the words and phrases in the specification and the claims be given their plain, ordinary, and accustomed meaning to those of ordinary skill in the applicable arts. The inventors are fully aware that they can be their own lexicographers if desired. The inventors expressly elect, as their own lexicographers, to use only the plain and ordinary meaning of terms in the specification and claims unless they clearly state otherwise and then further, expressly set forth the “special” definition of that term and explain how it differs from the plain and ordinary meaning. Absent such clear statements of intent to apply a “special” definition, it is the inventors' intent and desire that the simple, plain and ordinary meaning to the terms be applied to the interpretation of the specification and claims.
The inventors are also aware of the normal precepts of English grammar. Thus, if a noun, term, or phrase is intended to be further characterized, specified, or narrowed in some way, then such noun, term, or phrase will expressly include additional adjectives, descriptive terms, or other modifiers in accordance with the normal precepts of English grammar. Absent the use of such adjectives, descriptive terms, or modifiers, it is the intent that such nouns, terms, or phrases be given their plain, and ordinary English meaning to those skilled in the applicable arts as set forth above.
Further, the inventors are fully informed of the standards and application of the special provisions of 35 U.S.C. § 112(f). Thus, the use of the words “function,” “means” or “step” in the Detailed Description or Description of the Drawings or claims is not intended to somehow indicate a desire to invoke the special provisions of 35 U.S.C. § 112(f), to define the invention. To the contrary, if the provisions of 35 U.S.C. § 112(f) are sought to be invoked to define the inventions, the claims will specifically and expressly state the exact phrases “means for” or “step for”, and will also recite the word “function” (i.e., will state “means for performing the function of [insert function]”), without also reciting in such phrases any structure, material or act in support of the function. Thus, even when the claims recite a “means for performing the function of . . . ” or “step for performing the function of . . . ,” if the claims also recite any structure, material or acts in support of that means or step, or that perform the recited function, then it is the clear intention of the inventors not to invoke the provisions of 35 U.S.C. § 112(f). Moreover, even if the provisions of 35 U.S.C. § 112(f) are invoked to define the claimed aspects, it is intended that these aspects not be limited only to the specific structure, material or acts that are described in the preferred embodiments, but in addition, include any and all structures, materials or acts that perform the claimed function as described in alternative embodiments or forms of the disclosure, or that are well known present or later-developed, equivalent structures, material or acts for performing the claimed function.
The foregoing and other aspects, features, and advantages will be apparent to those of ordinary skill in the art from the specification, drawings, and the claims.
Implementations will hereinafter be described in conjunction with the appended drawings, where like designations denote like elements, and:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of implementations.
This disclosure, its aspects and implementations, are not limited to the specific material types, components, methods, or other examples disclosed herein. Many additional material types, components, methods, and procedures known in the art are contemplated for use with particular implementations from this disclosure. Accordingly, for example, although particular implementations are disclosed, such implementations and implementing components may comprise any components, models, types, materials, versions, quantities, and/or the like as is known in the art for such systems and implementing components, consistent with the intended operation.
The word “exemplary,” “example,” or various forms thereof are used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” or as an “example” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Furthermore, examples are provided solely for purposes of clarity and understanding and are not meant to limit or restrict the disclosed subject matter or relevant portions of this disclosure in any manner. It is to be appreciated that a myriad of additional or alternate examples of varying scope could have been presented, but have been omitted for purposes of brevity.
While this disclosure includes a number of implementations that are described in many different forms, there is shown in the drawings and will herein be described in detail particular implementations with the understanding that the present disclosure is to be considered as an exemplification of the principles of the disclosed methods and systems, and is not intended to limit the broad aspect of the disclosed concepts to the implementations illustrated.
In the following description, reference is made to the accompanying drawings which form a part hereof, and which show by way of illustration possible implementations. It is to be understood that other implementations may be utilized, and structural, as well as procedural, changes may be made without departing from the scope of this document. As a matter of convenience, various components will be described using exemplary materials, sizes, shapes, dimensions, and the like. However, this document is not limited to the stated examples and other configurations are possible and within the teachings of the present disclosure. As will become apparent, changes may be made in the function and/or arrangement of any of the elements described in the disclosed exemplary implementations without departing from the spirit and scope of this disclosure.
The present disclosure relates to a shipping pallet wrapping system 100 that is configured to wrap a palletized load. The shipping pallet wrapping system 100 has a support bar 102 and at least one adjustment arm 104, as shown in
Each of the adjustment arms 104 may comprise a captive nut 118, a stud 120, a guide base 122, a guide 124, a sleeve 126 and an adjustment knob 128, as shown in
The stud 120 has a fixed end 134 coupled to the captive nut 118 and a free end 136 extending away from the support bar 102. The stud 120 may be externally threaded along the entirety of its length, may be threaded on the fixed end 134 and the free end 136, but not in the middle, or may not be threaded at all. The stud 120 provides support and connection from the support bar 102 along the length of the adjustment arm 104.
Turning to
Turning to
The adjustment knob 128 may be nested within the recess 160 of the support flange 158, providing support to the adjustment knob 128 as discussed above. As shown in
Each of the adjustment arms 104 is configured to tighten onto the support bar 102 when the corresponding adjustment knob 128 is rotated in a first direction, and to loosen off of the support bar 102 when the corresponding adjustment knob 128 is rotated in a second direction opposite the first direction. Because the adjustment knob 128 is on the free end 136 of the stud 120, which is distal to the support bar 102, the adjustment knob 128 is easily accessible. A location of each of the adjustment arms 104 is adjustable along the support bar 102. Thus, the adjustment knob 128 can be used to loosen the adjustment arm 104, and the adjustment arm 104 can then be moved along the support bar 104 to a new desired location. Once in the new location, the adjustment knob 128 can then be tightened onto the stud 120, and thus onto the support bar 102. Adjusting the position of the adjustment arms 104 can thus be done relatively quickly, saving time and money.
It will be understood that implementations of a shipping pallet wrapping system are not limited to the specific assemblies, devices and components disclosed in this document, as virtually any assemblies, devices and components consistent with the intended operation of a shipping pallet wrapping system may be used. Accordingly, for example, although particular shipping pallet wrapping systems, and other assemblies, devices and components are disclosed, such may include any shape, size, style, type, model, version, class, measurement, concentration, material, weight, quantity, and/or the like consistent with the intended operation of shipping pallet wrapping systems. Implementations are not limited to uses of any specific assemblies, devices and components; provided that the assemblies, devices and components selected are consistent with the intended operation of a shipping pallet wrapping system.
Accordingly, the components defining any shipping pallet wrapping system may be formed of any of many different types of materials or combinations thereof that can readily be formed into shaped objects provided that the materials selected are consistent with the intended operation of a shipping pallet wrapping system. For example, the components may be formed of: polymers such as thermoplastics (such as ABS, Fluoropolymers, Polyacetal, Polyamide; Polycarbonate, Polyethylene, Polysulfone, and/or the like), thermosets (such as Epoxy, Phenolic Resin, Polyimide, Polyurethane, Silicone, and/or the like), any combination thereof, and/or other like materials; glasses (such as quartz glass), carbon-fiber, aramid-fiber, any combination thereof, and/or other like materials; composites and/or other like materials; metals, such as zinc, magnesium, titanium, copper, lead, iron, steel, carbon steel, alloy steel, tool steel, stainless steel, brass, nickel, tin, antimony, pure aluminum, 1100 aluminum, aluminum alloy, any combination thereof, and/or other like materials; alloys, such as aluminum alloy, titanium alloy, magnesium alloy, copper alloy, any combination thereof, and/or other like materials; any other suitable material; and/or any combination of the foregoing thereof. In instances where a part, component, feature, or element is governed by a standard, rule, code, or other requirement, the part may be made in accordance with, and to comply under such standard, rule, code, or other requirement.
Various shipping pallet wrapping systems may be manufactured using conventional procedures as added to and improved upon through the procedures described here. Some components defining a shipping pallet wrapping system may be manufactured simultaneously and integrally joined with one another, while other components may be purchased pre-manufactured or manufactured separately and then assembled with the integral components. Various implementations may be manufactured using conventional procedures as added to and improved upon through the procedures described here.
Accordingly, manufacture of these components separately or simultaneously may involve extrusion, pultrusion, vacuum forming, injection molding, blow molding, resin transfer molding, casting, forging, cold rolling, milling, drilling, reaming, turning, grinding, stamping, cutting, bending, welding, soldering, hardening, riveting, punching, plating, and/or the like. If any of the components are manufactured separately, they may then be coupled with one another in any manner, such as with adhesive, a weld, a fastener (e.g. a bolt, a nut, a screw, a nail, a rivet, a pin, and/or the like), wiring, any combination thereof, and/or the like for example, depending on, among other considerations, the particular material forming the components.
It will be understood that methods for manufacturing or assembling shipping pallet wrapping systems are not limited to the specific order of steps as disclosed in this document. Any steps or sequence of steps of the assembly of a shipping pallet wrapping system indicated herein are given as examples of possible steps or sequence of steps and not as limitations, since various assembly processes and sequences of steps may be used to assemble shipping pallet wrapping systems.
The implementations of a shipping pallet wrapping system described are by way of example or explanation and not by way of limitation. Rather, any description relating to the foregoing is for the exemplary purposes of this disclosure, and implementations may also be used with similar results for a variety of other applications employing a shipping pallet wrapping system.
This application claims the benefit of the filing date of U.S. Provisional Patent Application 63/004,651 entitled “Shipping Pallet Wrapping System” to Darrel Bison that was filed on Apr. 3, 2020, the disclosure of which is hereby incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
1351809 | Sutherland | Sep 1920 | A |
2026282 | Leguillon | Dec 1935 | A |
2823530 | Rikard | Feb 1958 | A |
3793798 | Lancaster | Feb 1974 | A |
3896604 | Marantz | Jul 1975 | A |
4102513 | Guard | Jul 1978 | A |
4166589 | Hoover et al. | Sep 1979 | A |
4235062 | Lancaster et al. | Nov 1980 | A |
4255918 | Lancaster et al. | Mar 1981 | A |
4353515 | Weaver et al. | Oct 1982 | A |
4468922 | McCrady et al. | Sep 1984 | A |
4530473 | Parry | Jul 1985 | A |
4619102 | Geisinger | Oct 1986 | A |
4671043 | Forni | Jun 1987 | A |
4723393 | Silbernagel | Feb 1988 | A |
4739945 | Yokoe | Apr 1988 | A |
4807427 | Casteel et al. | Feb 1989 | A |
4845920 | Lancaster | Jul 1989 | A |
4905448 | Plitt | Mar 1990 | A |
4905451 | Jaconelli | Mar 1990 | A |
4961306 | Sawhney et al. | Oct 1990 | A |
5031771 | Lancaster | Jul 1991 | A |
5079898 | Springs et al. | Jan 1992 | A |
5107657 | Diehl et al. | Apr 1992 | A |
5125209 | Thimon et al. | Jun 1992 | A |
5168685 | Suzuki | Dec 1992 | A |
5195297 | Sperling et al. | Apr 1993 | A |
5211353 | Lewin | May 1993 | A |
5307609 | Kurata | May 1994 | A |
5315808 | MacIvor et al. | May 1994 | A |
5385001 | Ramer | Jan 1995 | A |
5409177 | Parry | Apr 1995 | A |
5447009 | Oleksy et al. | Sep 1995 | A |
5535962 | Bargowski | Jul 1996 | A |
5797246 | Martin-Cocher | Aug 1998 | A |
5819503 | Lancaster, III | Oct 1998 | A |
5965262 | Whisler | Oct 1999 | A |
6065269 | Malnati | May 2000 | A |
6164047 | Rossi | Dec 2000 | A |
6311459 | Rossi | Nov 2001 | B1 |
6393808 | Kallner | May 2002 | B1 |
6688076 | Rivera, Jr. | Feb 2004 | B1 |
6745544 | Matsumoto et al. | Jun 2004 | B2 |
6775956 | Lacey | Aug 2004 | B1 |
6796105 | Rossi | Sep 2004 | B2 |
6892515 | Cere | May 2005 | B2 |
6971220 | Rampp | Dec 2005 | B1 |
7269935 | Jafar | Sep 2007 | B2 |
7581368 | Bison | Sep 2009 | B1 |
7621107 | Vanderheiden | Nov 2009 | B2 |
7908831 | Dugan | Mar 2011 | B1 |
8046975 | Bison | Nov 2011 | B1 |
8053056 | Heikaus et al. | Nov 2011 | B2 |
8276349 | Van Amstel et al. | Oct 2012 | B2 |
8528615 | Colson | Sep 2013 | B2 |
8549819 | Bison | Oct 2013 | B1 |
8707664 | Bison | Apr 2014 | B1 |
10279945 | Nelson | May 2019 | B2 |
20040244336 | Suolahti | Dec 2004 | A1 |
20080066431 | Cousins | Mar 2008 | A1 |
20080092489 | Smith | Apr 2008 | A1 |
20080209859 | Vanderheiden | Sep 2008 | A1 |
20090277136 | Van Amstel et al. | Nov 2009 | A1 |
20110088359 | Brocard | Apr 2011 | A1 |
20140331609 | Bison | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
3933952 | May 1990 | DE |
0178145 | Apr 1986 | EP |
1332968 | Aug 2003 | EP |
1803345 | Jul 2007 | EP |
2241484 | Apr 1991 | GB |
10129609 | May 1999 | JP |
2000302102 | Oct 2000 | JP |
2002166905 | Jun 2002 | JP |
2002211502 | Jul 2002 | JP |
2002225806 | Aug 2002 | JP |
2002225807 | Aug 2002 | JP |
9012737 | Nov 1990 | WO |
2009155713 | Dec 2009 | WO |
Number | Date | Country | |
---|---|---|---|
63004651 | Apr 2020 | US |