This application claims the benefit of European Application EP14160746.5, filed on Mar. 19, 2014, which is incorporated herein by reference in its entirety.
The performance of an oleo-pneumatic shock absorber used in aircraft landing gear depends substantially on the level of hydraulic fluid situated therein. Current in-service methods for establishing the condition of an oleo-pneumatic shock absorber are based on measurement of temperature, gas pressure and shock absorber travel which are then used to estimate the level of hydraulic fluid in the shock absorber. Whilst measuring these parameters is straightforward, incorrect conclusions can be drawn and inappropriate actions can be taken if, for example, the level of hydraulic fluid within the shock absorber is estimated to be correct when in fact it is too low. An incorrectly serviced shock absorber containing, for example, too little or too much hydraulic fluid will cause the landing gear to perform outside its design boundaries and in extreme cases could cause the shock absorber and thus the landing gear to fail.
Various techniques have been proposed for measuring the fluid levels including optical probe systems and ultrasonic techniques. However, optical probe systems only provide pass/fail statistic and are not capable of continuous measurement over a range of fluid levels. Ultrasonic techniques transmit ultrasonic pulses towards the gas-oil boundary and measure time of flight of received waves reflected off the boundary. However, foam and fluid contamination at the gas-liquid boundary tends to cause significant scattering and attenuation of the transmitted ultrasonic signal and piezo transducers used to generate the ultrasonic signals are fragile and thus susceptible to failure from the shock of impact of an aircraft landing gear with the ground.
According to a first aspect of the invention there is provided a telescopic shock absorber, having: a housing; a cavity located within the housing and containing a liquid and a gas; and a sensor for measuring the level of the liquid in the cavity, the sensor having: a first waveguide having a first end and a second end; and a communications interface operable to transfer electrical signals between the first waveguide and the exterior of the housing, wherein the first waveguide is arranged such that when the shock absorber is in normal use the first end is surrounded by the gas and the second end is immersed in the liquid.
By locating the first waveguide within the cavity across the gas-liquid boundary, an accurate measurement of the level of hydraulic fluid within the shock absorber can be ascertained. The first waveguide is able to provide an accurate and substantially continuous measurement of the level of fluid within the cavity which is substantially unaffected by foam and fluid contamination at the gas-liquid boundary.
The shock absorber may further have a transceiver coupled to one of the ends of the first waveguide. The transceiver may then couple electromagnetic (EM) waves into the first waveguide and receive reflected EM waves from the first waveguide. In this sense, the end of the first waveguide which is not coupled to the transceiver may be shorted so as to act as a node from which EM waves transmitted into the waveguide are reflected. By coupling EM waves into the waveguide and receiving EM waves reflected from the same end, a change in frequency of peaks in amplitude of reflected waves can be used to determine the average dielectric constant of material within the waveguide and thus the ratio of liquid relative to gas.
Gas and impurities dissolved in the liquid may affect the liquid's dielectric constant, so to improve the accuracy of the above calculation, the shock absorber may further include a calibration waveguide fully immersed in the liquid when the shock absorber is in normal use, the transceiver being coupled to an end of the first calibration waveguide. This calibration waveguide may be used to more accurately measure the dielectric constant of the liquid such that the measure of the level of the liquid in the first waveguide can be improved.
The shock absorber may further include a second waveguide disposed within the cavity having a first end and a second end, the second waveguide arranged such that when the shock absorber is in normal use, the first end of the second waveguide is immersed in the liquid and the second end of the second waveguide is immersed in the gas.
The communication interface may be operable to transfer electrical signals between the second waveguide and the exterior of the housing. By measuring the fluid level in the shock absorber using both the first and second waveguides, the accuracy of the fluid level measurement can be improved. In such embodiments, the transceiver is preferably coupled to the first end of the first waveguide and the first end of the second waveguide. The accuracy of measurement of fluid level is maximised when the fluid level is closest to the end into which EM waves are coupled. Thus, by coupling EM waves into opposite ends of the two waveguides, a measurement of fluid level can always be acquired when one of the waveguides is operating in its most accurate configuration.
The first and/or second waveguides may be a coaxial waveguide having a hollow tube arranged coaxially around a solid core. Each hollow tube is preferably perforated such that fluid is able to flow through the waveguide(s) so that performance of the shock absorber is not affected by their presence.
The communications interface may include a port in a wall of the housing, arranged to pass one or more transmission mediums through the housing wall but prevent leakage of fluid or gas in or out of the housing.
The communications interface may include an inductive loop located proximate to a wall of the cavity thereby eradicating issues associated with fluid and gas leakage through a port which may otherwise be required in the wall.
According to a second aspect of the invention there is provided a method of measuring the level of liquid in a telescopic shock absorber, the shock absorber having a housing and a cavity located within the housing and containing a liquid and a gas, the method including: transmitting an electromagnetic signal over a range of frequencies into a first end or a second end of a first waveguide located within the cavity, the first end surrounded by the gas, the second end immersed in the liquid; receiving a reflected EM signal from the first waveguide; analysing the reflected EM signal to detect one or more peaks in the reflected EM signal; and determining the level of the liquid in the cavity as a function of the frequency of the peaks and the dielectric constants of the liquid and the gas.
The method may further include transmitting an electromagnetic signal over a range of frequencies into the calibration waveguide located within the cavity and submerged in the liquid, receiving a reflected EM signal from the calibration waveguide, analysing the reflected EM signal to detect one or more calibration peaks in the reflected EM signal and determining the dielectric constant of the liquid as a function of the frequency of the calibration peaks and at least one dimension of the calibration waveguide.
The method may further include transmitting an electromagnetic signal over a range of frequencies into a further calibration waveguide located within the cavity and surrounded by the gas, receiving a reflected EM signal from the further calibration waveguide, analysing the reflected EM signal to detect one or more further calibration peaks in the reflected EM signal and determining the dielectric constant of the liquid as a function of the frequency of the further calibration peaks and at least one dimension of the waveguide.
The method may further include transmitting an electromagnetic signal over a range of frequencies into a first end of a second waveguide located within the cavity the first end immersed in the liquid, the second waveguide having a second end surrounded by the gas; receiving a reflected EM signal from the first waveguide; analysing the reflected EM signal to detect one or more peaks in the reflected EM signal; and determining the level of the liquid in the cavity as a function of the frequency of the peaks and the dielectric constants of the liquid and the gas.
Embodiments of the present invention will now be described, by non-limiting example only, with reference to the accompanying drawings, in which:
The damping properties of the shock absorber 3 are affected by the level of hydraulic fluid present in the cavity 13 and so it is desirable to have an awareness of this level when the landing gear 1 is in service. However, as of the priority date of this application, it remains difficult to perform direct in-service measurements of the level of hydraulic fluid in the cavity 13. Accordingly, an estimate may be made based on measurements of temperature, gas pressure and shock absorber travel. An aim of the present invention is to provide an improved method of measuring the level of oil in a oleo-pneumatic shock absorber 3.
The shock absorber 20 further comprises a sensor, generally designated 34, operable to measure the level of fluid in the cavity 28. The sensor 34 comprises a waveguide 36, a communications interface 38, and an optional radio frequency (RF) transceiver 40. One end of the waveguide 36 is located in the liquid region 32 and the other, top end is situated in the gas region 30 of the cavity 28. In the embodiment shown, the waveguide 36 is a coaxial waveguide having an outer tube 42 coaxially surrounding a central conducting core 44. However in other embodiments any suitable waveguide may be used. For example, a PCB type waveguide such as a stripline, microstrip or other suitable waveguide may be used. To aid entry of liquid and gas into the waveguide 36 and in particular the gap between the tube 42 and the core 44, the tube 42 may be provided with a plurality of perforations. Such perforation permit free movement of fluid through the shock absorber 20 so that the presence of the waveguide 36 in the cavity 28 does not substantially affect the performance of the shock absorber 20.
The communications interface 38 is operable to transfer electrical signals between components within the cavity, such as the waveguide 36, and components external to the cavity, such as the RF transceiver 40 shown in
Preferably, the RF transceiver 40 is connected to the waveguide 36 via the communications line 38, as shown in
Operation of the sensor 34 will now be described. The waveguide 36 is preferably shorted at the end opposite to that coupled to the RF transceiver 40. Accordingly, the waveguide acts as a short-circuited transmission line. Waves are coupled into the waveguide 36 by the transceiver 40, travel along the waveguide 36 and are reflected at the shorted end. Reflected waves then travel back up the waveguide 36 and are received at the transceiver 40. Transmitting a wave having a wavelength equal to a multiple of a quarter of the length of the waveguide will create a standing wave in the waveguide 36, causing the waveguide 36 to resonate. In accordance with transmission line theory, the resonant frequency of the waveguide 36 depends on the dielectric constant of the material disposed within the waveguide 36 as this affects the speed of travel of waves in the waveguide 36. Since the dielectric constant of the liquid in the liquid region 32 differs from that of the gas region, as the level of liquid in the cavity 28 changes, the dielectric properties of the material (gas and liquid) located within the waveguide also changes. Accordingly, as the liquid level moves up and down the waveguide, the resonant frequency of the waveguide will vary.
During operation, the RF transceiver 40 may couple an RF signal into the waveguide 36. The frequency of the transmitted RF signal may be swept over a range of frequencies and subsequent reflected RF signals received and preferably recorded by the RF transceiver 40. Peaks in amplitude of the received RF signals which correspond to resonance in the waveguide may then be recorded, together with the corresponding excitation frequency of the transmitted RF signal. With knowledge of the dielectric constant of both the gas and the liquid, the fluid height in the cavity may then be calculated from the frequency corresponding to maxima in the reflected RF signal.
The present invention therefore allows for accurate continuous measurement of fluid level in an oleo pneumatic shock absorber. Accordingly, the system may be used as a prognostic maintenance system whereby the rate of loss of fluid can be assessed and decision made on when to undertake corrective action. By measuring the actual fluid level within the shock absorber, ground crew no longer have to rely on unreliable and inaccurate methods of estimating the level of fluid within the cavity.
Whilst reasonable estimates of the dielectric constant of the gas and liquid disposed in the cavity 28 can be made, in certain conditions the dielectric constant of the liquid (in particular oil) can vary considerably. For example, the dielectric constant of many hydraulic fluids is dependent both on temperature of the liquid and the amount of gas dissolved therein. The inventors have realised that the accuracy of measurement could be further improved by measuring of the dielectric properties of the fluid within the liquid region 32.
Additionally or alternatively, the sensor 34 may comprise a further calibration waveguide (not shown) located in the gas region 30 so as to provide a realtime measurement of the dielectric properties of the gas. Such a further calibration waveguide may operate in a similar manner to the calibration waveguide 48 shown in
It will be appreciated that the response of the waveguide 36 is non-linear with the sensitivity of measurement of frequency peaks increasing when the gas-liquid boundary is furthest from the shorted end of the waveguide 36. That is, the sensor 34 is more sensitive to changes in fluid level at the end of the waveguide 36 furthest away from shorted end. Accordingly, in a further embodiment shown in
It will be appreciated that embodiments of
It will also be appreciated that in some embodiments, the RF transceiver 40 may not form part of the sensor 34. Instead, as shown in
It will be appreciated that the schematic diagrams of the landing gear 1 shown in
Additionally, whilst shock absorbers described above comprise a single stage, in other embodiments shock absorbers may comprise multiple stages. In such cases there may be multiple cavities and/or multiple gas-liquid boundaries. In such embodiments, one or more sensors may be disposed within one or more of the cavities so as to measure the level of one or more gas-liquid boundaries in the shock absorber.
It will be appreciated that the term radio frequency referred to throughout the present application relates to electromagnetic waves typically having a frequency in the range of between around 200 kHz to 300 GHz. The skilled person will also appreciate that whilst embodiments of the invention are described with reference to the use of RF waves, EM waves having frequencies outside of the RF spectrum may also be used, where suitable, without departing from the scope of this disclosure.
The skilled person will appreciate that features of the shock absorbers described with reference to
Number | Date | Country | Kind |
---|---|---|---|
14160746.5 | Mar 2014 | EP | regional |