Embodiments pertain to explosive initiation. Some embodiments relate to initiators and initiator assemblies.
Explosive payloads are delivered in a variety of vehicles including missiles, gun fired projectiles, bombs and the like. Targets are located within hardened structures having impact and explosive resistant walls or structure (e.g., overlying rock and the like). Successful delivery of the payload to the target often requires penetration of the payload through the protective structure followed by detonation within or near the target.
Impact and penetration of the delivery vehicle and explosive payload transmits significant shock loads to the sensitive materials within the vehicle and causes one or more of acceleration, deceleration, rebounding of materials, movement of the material relative to other sensitive components and the like. One sensitive feature within the delivery vehicle is the initiator used to detonate the explosive payload. The shock loading and rapid deceleration of the delivery vehicle transmits stress to the explosive charge within the initiator. The stress may cause the explosive charge to crack and correspondingly prevent proper initiation of the charge resulting in failure of the explosive payload to detonate.
In accordance with some embodiments, an initiator assembly and method for supporting an explosive charge is discussed that supports the initiator components during delivery, impact and penetration and ensures reliable initiation and corresponding detonation of the explosive payload. Other features and advantages will become apparent from the following description of the preferred example, which description should be taken in conjunction with the accompanying drawings.
A more complete understanding of the present subject matter may be derived by referring to the detailed description and claims when considered in connection with the following illustrative Figures. In the following Figures, like reference numbers refer to similar elements and steps throughout the Figures.
Elements and steps in the Figures are illustrated for simplicity and clarity and have not necessarily been rendered according to any particular sequence. For example, steps that may be performed concurrently or in different order are illustrated in the Figures to help to improve understanding of examples of the present subject matter.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific examples in which the subject matter may be practiced. These examples are described in sufficient detail to enable those skilled in the art to practice the subject matter, and it is to be understood that other examples may be utilized and that structural changes may be made without departing from the scope of the present subject matter. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of the present subject matter is defined by the appended claims and their equivalents.
The present subject matter may be described in terms of functional block components and various processing steps. Such functional blocks may be realized by any number of techniques, technologies, and methods configured to perform the specified functions and achieve the various results. For example, the present subject matter may employ various materials, actuators, electronics, shape, airflow surfaces, reinforcing structures, explosives and the like, which may carry out a variety of functions. In addition, the present subject matter may be practiced in conjunction with any number of devices, and the systems described are merely exemplary applications.
Referring now to
Referring again to
Assembly of the bridge substrate 110 and circuit board 124, in one example, is accomplished with an adhesive interposed between portions of the bridge substrate 110 and the circuit board 124. In another example, the adhesive extends around the circuit board 124 and bridge substrate 110 to combine the bridge substrate and circuit board 124 into a single unitary element. Alternatively, the adhesive used to couple the circuit board 124 with the bridge substrate 110 is also used to couple the header 130 with the assembly of the bridge substrate 110 and the circuit board 124. In one example, the adhesive includes a non-conductive insulative adhesive that substantially prevents arcing from the bridge substrate 110 to the header 130. In another example, the bridge substrate 110 includes plated through holes 122 providing a conductive via from the first and second bridge contacts 112, 114 to the underlying circuit board 124 and initiator leads 128. In one example, solder plugs are positioned within the plated through holes 122 to tightly seal the connections between the bridge substrate 110 and the initiator leads 128 and provide enhanced current conduction from the initiator leads 128 to the first and second bridge contacts 112, 114. Optionally, the adhesive previously described is also used to fix one or more of the bridge substrate 110, the circuit board 124 or the header 130 within the initiator cavity 103. Stated another way, the adhesive fixes one or more of the bridge substrate, the circuit board and the header to the interior wall of the initiator cavity 103.
Referring again to
As shown in
As shown in
In another example, the bridge substrate 110 including the substrate base 111 is constructed with a rigid material including but not limited to ceramics, rigid insulators, and the like. The rigid structure of the bridge substrate 110 ensures the bridge substrate 110 provides rigid support to the ionizing bridge 120 during activation of the initiator assembly 100. For instance, when current is delivered through the first and second bridge contacts 112, 114 the ionizing bridge 120 is rapidly ionized and it develops a large pressure within the initiator cavity 103. The pressure developed by the ionizing bridge 120 is delivered violently to the flyer plate 108 and drives the flyer plate through the barrel 106 to strike the explosive charge 104 and initiate detonation of the explosive payload in the delivery device. The bridge substrate acts as a supporting plate to minimize deflection of the substrate 110 and ensure consistent delivery of pressure toward the explosive charge. As described above, the bridge substrate 110 also acts as a supporting plate to the explosive charge during impact and penetration of a target through surface to surface coupling therebetween.
Optionally, the bridge substrate 110 cooperates with the circuit board 124 and the header 130 to provide additional support to the substrate base 111 and thereby further contain and direct the pressure developed by the ionizing bridge 120 toward the explosive charge 104. Stated another way, one or more of the bridge substrate 110, the circuit board 124 and the header 130 provides structural support to the ionizing bridge 120 and substantially ensures pressure developed by the ionizing bridge 120 during activation of the initiator assembly is directed entirely toward the explosive charge 104 to ensure reliable initiation of the explosive charge with negligible deflection of the bridge substrate 110 in a direction opposed to the explosive charge 104.
In the example shown in
Referring again to
In some conventional initiator assemblies, the explosive charge may be fractured within an initiator housing. As will be discussed in further detail below, a conventional initiator assembly may include multiple features projecting in an irregular fashion between the explosive and a bridge substrate. These projections and recesses between projections cause the fracture of the explosive charge and failure of many conventional initiator assemblies to initiate. In conventional initiator assemblies, the initiator housing may be sized and shaped to receive the components of the initiator assembly therein. In conventional initiator assemblies, the initiator housing contains an explosive charge and a barrel adjacent to the explosive charge. As previously described above, the barrel includes a barrel lumen sized and shaped to pass at least a portion of a flyer plate through to facilitate striking of the explosive charge. Conventional initiator assemblies include means of connecting leads to the bridge, where such means consist of multiple parts which do not uniformly support the barrel and explosive.
In these conventional initiator assemblies, wires or other lead-to-bridge conductors electrically connect the leads to the bridge, creating a non-uniform surface above the bridge substrate for supporting the barrel and explosive. The glass between the leads and header may also extend beyond the header towards the explosive, creating another non-uniform surface for supporting the barrel and explosive. The leads also extend beyond the header, creating more non-uniform surfaces for supporting the barrel and explosive. Further, the bridge substrate has a square configuration that overlay a portion of the cross-sectional area of the header and the corresponding cross-sectional area of the explosive charge. Stated another way, the bridge substrate underlies only a portion of the explosive charge after assembly within the initiator assembly.
Combination of the leads, wires or lead-to-wire conductors, glass fillets, and the bridge substrate in conventional initiator assemblies provides an undulating uneven surface configured for point engagement with the barrel and coupling with the explosive charge. Engagement of the explosive charge (through the barrel) with the uneven surface of the lead, wire or lead-to-wire conductors, glass fillets (in some designs), and the bridge substrate provides point loading to the explosive charge. During impact of an explosive delivery device with a target the device experiences rapid deceleration with corresponding deceleration or acceleration of a conventional initiator assembly, depending on its orientation, as well as rebounding of the components within the initiator assembly and movement of components relative to each other within the assembly.
Damage through a dynamic environment to a conventional initiator assembly may include fracturing of the explosive charge because of force transmitted to the explosive charge at discreet locations from the leads and the smaller bridge substrate. Because the explosive charge is not consistently and uniformly supported by the bridge substrate the explosive charge may become cracked and will not properly initiate when the explosive delivery device impacts and penetrates the target.
In these conventional initiator assemblies, the bridge substrate may takes up less than 50 percent of the total area of the corresponding surface of the explosive charge. Stated another way, the bridge substrate would only support a portion of the area of the explosive charge leaving the remainder of the explosive charge free of support or supported by the uneven contact surfaces of the leads engaged with the barrel interposed therebetween. Minimal support is thereby provided to the explosive charge allowing force concentrations at portions of the explosive charge overlying each of the leads and unsupported portions of the explosive charge overlying areas of the initiator assembly not otherwise covered by the area of the bridge substrate.
As shown in
In contrast, the upwardly projecting leads elevated relative to the bridge substrate and the minimal surface area of the bridge substrate of many conventional initiator assemblies ensure the explosive charge experiences dynamic loading at localized positions around the explosive charge. Transmission of dynamic forces between the bridge substrate and the leads to the explosive charge (e.g., with the barrel therebetween) in these conventional initiator assemblies fractures the explosive charge and frustrates initiation of the explosive charge or causes the initiator assembly to fail entirely. The initiator assembly 100, as shown in
In addition to the uniform planar characteristics of the bridge substrate 110 the bridge substrate is constructed with structurally robust materials including one or more of ceramics, hard insulators, and the like. The materials of the bridge substrate 110 further support the explosive charge 104 and cooperate with the continuous planar mounting surface 119 to substantially ensure the explosive charge 104 is supported throughout dynamic changes to the initiator assembly 100 during impact and penetration of the explosive delivery device with a target. Stated another way, the bridge substrate 110 acts as a support plate to maintain a rigid support structure for the explosive charge and prevent fracture. Further, the example shows the circuit board 124 and the header 130 further cooperating with the bridge substrate 110 to provide additional support to the substrate as well as the explosive charge 104. Engagement between the components of the initiator assembly 100 including the header 130, the circuit board 124, the bridge substrate 110 and the explosive charge 104 ensures the explosive charge is stacked when held in the initiator assembly 100 and supported throughout dynamic changes to the assembly thereby substantially minimizing the risk of fracture of the explosive charge 104 even during impact and penetration of an explosive delivery device through a target. Further, the support provided by one or more of the bridge substrate 110 in combination with the circuit board 124 and the header 130 provides a rigid support to the bridge substrate 110 and the overlying ionizing bridge 120. Activation of the ionizing bridge 120 through the introduction of current across the first and second bridge contacts 112, 114 ensures the ionizing bridge 120 develops a pressure within the initiator cavity 103 that is fully directed toward the explosive 104 and the flyer plate 108. Reliable initiation of the explosive charge 104 is thereby attained. The isolation sleeve 138 further ensures the explosive charge 104 remains in an intact unfractured state during delivery of the explosive delivery device including the initiator assembly 100.
The initiator assembly 700 further includes a bridge substrate 700. The bridge substrate 700 is similar in some regards to the bridge substrate 110 previously described herein. For example, the bridge substrate 700 includes first and second bridge contacts 112, 114 and an ionizing bridge 120. The first and second bridging contacts 112, 114 include corresponding contact surfaces 118 that form a continuous planar mounting surface 119 with the uniform first planar surface 116. As described herein, the continuous planar mounting surface 119 is coupled along a corresponding portion of the explosive charge 104 to ensure a continuous surface-to-surface contact therebetween.
The bridge substrate 700 shown in
In the example shown in
As described herein, the bridge substrate 700 generally has a circular configuration matched to the cross-sectional area of the initiator housing 102. The bridge substrate 700 further includes an area fully underlying the explosive charge 104 to ensure continuous surface to surface coupling between the explosive charge 104 and the bridge substrate 700. In other examples, the bridge substrate 700 (or 110) includes other shapes sized and shaped to fit within the initiator housing 102. For instance, the bridge substrate includes, but is not limited to, a star shaped, a triangular shape, a square shape or other configuration. Bridge substrates 700 with non-circular shapes are engaged with correspondingly shaped explosive charges 104. The bridge substrates thereby provide continuous surface-to-surface contact with similarly shaped explosive charges 104. In other examples, bridge substrates 700 with non-circular shapes overlie a portion of an explosive charge 104. For instance, where the bridge substrate 700 has a star shape one or more points of the star shaped support the perimeter portions of the explosive charge 104 thereby minimizing cracking of the explosive charge 104 during dynamic loading of the initiator assembly 700. That is to say, the bridge substrates 700 continue to provide a continuous planar mounting surface 119 sized and shaped for coupling along corresponding surfaces of the explosive charge 104. In still another example, the bridge contacts 112, 114 include other shapes beyond the ovular or kidney shapes provided in
In yet another example, the second surface 117 of the bridge substrate 700 includes one or more pins extending from the second surface 117. Stated another way, instead of providing backside conductors 800 the bridge substrate 700 provides one or more pins extending away from the second surface 117 for coupling with corresponding electronic components, such as a capacitor used for initiating the initiator assembly 700. Alternatively, the backside conductors 800 are used for coupling of the first and second bridge contacts 112, 114 with a circuit board, such as circuit board 124 through solder pads 126 shown in
The initiator assemblies 100, 700 described herein are constructed with a plurality of components as described above. In one example, the bridge substrate is formed with a plurality of similar substrates along a frame (e.g., a sheet) where the bridge substrates 100, 700 are connected with the frame by tabs. The individual bridge substrates 100, 700 are thereafter separated from the sheets for use in separate initiator assemblies 100, 700. As shown in
The initiator assemblies described herein provide reliable axial and lateral support for the explosive charge and thereby prevent fracture of the explosive charge during dynamic loading through impact and penetration of an explosive delivery device with a target. A robust bridge substrate described herein provides structural support through surface-to-surface contact coupling between the bridge substrate and the explosive charge. Mechanical loads are spread over a large area of the bridge substrate mated to a corresponding area of the explosive charge. Because the bridge substrate presents a continuous planar mounting surface comprising the surface of the bridge substrate as well as the bridge contacts the explosive charge is reliably supported across its surface area to substantially prevent point loads at any location on the explosive charge. Rapid deceleration or acceleration of the initiator assembly with corresponding dynamic loading between the explosive charge and the bridge substrate is transmitted across the surface-to-surface contact between the two components and thereby substantially avoids any localized stresses at any point on the explosive charge.
Similarly, the isolation sleeve coupled around the explosive charge substantially prevents lateral stresses from fracturing the explosive charge where the explosive delivery device impacts and penetrates a target at a non-perpendicular angle. The explosive charge is thereby supported in axially and lateral directions throughout dynamic loading (e.g., for instance impact, penetration and the like) and is maintained in unitary unfractured state. Reliable and consistent initiation of the initiator assembly is thereby maximized while partial or entire failures of the initiator assembly to initiate are substantially minimized.
In the foregoing description, the subject matter has been described with reference to specific exemplary examples. However, it will be appreciated that various modifications and changes may be made without departing from the scope of the present subject matter as set forth herein. The description and figures are to be regarded in an illustrative manner, rather than a restrictive one and all such modifications are intended to be included within the scope of the present subject matter. Accordingly, the scope of the subject matter should be determined by the generic examples described herein and their legal equivalents rather than by merely the specific examples described above. For example, the steps recited in any method or process example may be executed in any order and are not limited to the explicit order presented in the specific examples. Additionally, the components and/or elements recited in any apparatus example may be assembled or otherwise operationally configured in a variety of permutations to produce substantially the same result as the present subject matter and are accordingly not limited to the specific configuration recited in the specific examples.
Benefits, other advantages and solutions to problems have been described above with regard to particular examples; however, any benefit, advantage, solution to problems or any element that may cause any particular benefit, advantage or solution to occur or to become more pronounced are not to be construed as critical, required or essential features or components.
As used herein, the terms “comprises”, “comprising”, or any variation thereof, are intended to reference a non-exclusive inclusion, such that a process, method, article, composition or apparatus that comprises a list of elements does not include only those elements recited, but may also include other elements not expressly listed or inherent to such process, method, article, composition or apparatus. Other combinations and/or modifications of the above-described structures, arrangements, applications, proportions, elements, materials or components used in the practice of the present subject matter, in addition to those not specifically recited, may be varied or otherwise particularly adapted to specific environments, manufacturing specifications, design parameters or other operating requirements without departing from the general principles of the same.
The present subject matter has been described above with reference to examples. However, changes and modifications may be made to the examples without departing from the scope of the present subject matter. These and other changes or modifications are intended to be included within the scope of the present subject matter, as expressed in the following claims.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other examples will be apparent to those of skill in the art upon reading and understanding the above description. It should be noted that examples discussed in different portions of the description or referred to in different drawings can be combined to form additional examples of the present application. The scope of the subject matter should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
This patent application is a continuation of and claims the benefit of priority to U.S. patent application Ser. No. 13/022,164 entitled “SHOCK HARDENED INITIATOR AND INITIATOR ASSEMBLY” filed Feb. 7, 2011, the entire contents of which are hereby incorporated in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 13022164 | Feb 2011 | US |
Child | 14257181 | US |