This patent disclosure relates generally to insulators and, more particularly, to a door system having an insulating and/or protective cover, such as a sleeve, to reduce the likelihood of a fire or a user being shocked by contacting the door system and/or prevent damage to a structure of the door system.
Some door systems can sometimes spark or shock a person or object that comes into contact with the door system due to discharge of static electricity. Some environments, such as hospitals or other healthcare facilities, may be an oxygen rich environment as a result of oxygen being used for therapeutic purposes. These environments may require precautionary measures to reduce accidents. For example, some intensive care unit (ICU) applications require measures to prevent sparks from occurring due to static to reduce the likelihood of igniting the oxygen.
In addition, some transit applications make it desirable to protect the public from electric shock that may occur when touching a train or other public transit vehicle which may be at a different electrical potential than a station door or boarding platform upon which passengers will embark. If passengers at one potential contact the public transit vehicle which is at another potential the passenger may receive an electric shock. As such, it may be desirable to have a door system that will reduce the likelihood of creating a shock or spark when brought into contact with a user or object using the door system.
The foregoing needs are met to a great extent by embodiments in accordance with the present disclosure which, in some embodiments, allow for a door system that will reduce the likelihood of creating a shock or spark when brought into contact with a user or object using or near the door system.
In one aspect, the disclosure describes a door system comprising a door including a frame forming at least a portion of a perimeter of the door and a cover configured to encase at least a portion of the frame. The frame comprises a first material and the cover comprises a second material.
In another aspect, the disclosure describes a method of reducing electrical discharge in a door system. The method includes encasing at least a portion of an electrically conductive frame member of a door with an electrically insulating cover. The cover has a cross-sectional shape generally corresponding to a cross-sectional shape of the frame member.
In another aspect, the disclosure describes an apparatus configured to encase at least a portion of a frame of a door. The apparatus includes an electrically insulating cover comprising a material that is different than an electrically conductive material from which the frame of the door is constructed.
There has thus been outlined, rather broadly, certain embodiments of the invention in order that the detailed description thereof herein may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional embodiments of the invention that will be described below and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of embodiments in addition to those described and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Additional features, advantages, and aspects of the disclosure may be set forth or apparent from consideration of the following detailed description, drawings, and claims. Moreover, it is to be understood that both the foregoing summary of the disclosure and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the disclosure as claimed.
The accompanying drawings, which are included to provide a further understanding of the disclosure, are incorporated in and constitute a part of this specification, illustrate aspects of the disclosure and together with the detailed description serve to explain the principles of the disclosure. No attempt is made to show structural details of the disclosure in more detail than may be necessary for a fundamental understanding of the disclosure and the various ways in which it may be practiced. In the drawings:
The aspects of the disclosure and the various features and advantageous details thereof are explained more fully with reference to the non-limiting aspects and examples that are described and/or illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one aspect may be employed with other aspects as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the aspects of the disclosure. The examples used herein are intended merely to facilitate an understanding of ways in which the disclosure may be practiced and to further enable those of skill in the art to practice the aspects of the disclosure. Accordingly, the examples and aspects herein should not be construed as limiting the scope of the disclosure, which is defined solely by the appended claims and applicable law. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings.
The door 18 may be made of a frame 26 which may be made of a plurality of portions or members which, in some embodiments, are extrusions which may be aluminum, steel, or other suitable material. The door 18 often contains an insert 24 such as a window that spans across an opening 23 formed within the frame 26. The insert 24 may be made of glass, plexiglass, or other suitable material. The frame 26 of the door 18 surrounds and may support the window or other insert 24. The door 18 is mounted in a door frame 22. The door frame 22 is mounted in the wall 12.
In other embodiments, the door system 10 may be used in transit systems. For example,
The door 18 includes an insert 24. The insert 24 may be transparent, translucent, or opaque. For example, the insert 24 may be a window made of glass, plexiglass, plastic or other suitable material. The door 18 has a frame 26 that surrounds and supports the insert 24. Optionally, the door 18 has a handle 20 or other hardware such as put not limited to push plates, kick plates and the like. Any suitable type of handle 20 such as a lever, knob, gripping recess, etc. may be used.
A frame member 27 may include an insert retaining structure 40. The insert retaining structure 40 serves to attach the insert 24 to the frame 26 of the door and retains the insert 24 in the door. In the example cross-section shown in
A nosing assembly 52 may be attached to the frame 26 on an opposing side from the retaining brackets 48, 50, for example, by at least one fastener 54 and a nosing assembly retaining plate 56. The nosing assembly 52 may provide a relatively soft surface that is configured to contact a corresponding surface of a door frame 22, as may be the case in medical environments, or of an opposing sliding door 32, 36, as may be the case in transit applications. The nosing assembly 52 may include a resilient member 53 and a rigid nosing assembly retaining plate 56 may aid in connecting the nosing assembly 52 to the frame 26, where use of one or more fasteners 54 alone may result in tearing or deterioration of the nosing assembly 52. In other embodiments, the nosing assembly 52 may attach to the frame 26 in another suitable way. For example, but not limiting, the nosing assembly 52 may attach to the frame 26 by an adhesive or slide in a track in the frame 26 and be captured by the track.
The resilient member 53 of the nosing assembly 52 may itself be electrically insulating such that the nosing assembly 52 may be disposed outside of the sleeve 58 without increasing the risk of electric shock or sparking. In this regard, as shown in
In operation, the nosing assembly 52 may be slid into contact with an adjacent and corresponding surface of a door frame 22 or opposing door. The resilient member of the nosing assembly 52 may deform to absorb the impact when closing the door and/or to form a seal between the frame 26 and the adjacent surface.
It should be appreciated that some or all frame members (e.g., top, sides, bottom) may receive a sleeve 58. For example, in some applications, only those frame members 27 most susceptible to contact may receive a sleeve such as the leading member supporting a handle 20, e.g., the first side frame member 27c. Similarly, all or only a portion of a frame member may receive a sleeve 58. For example, in a transit application, portions of a platform door 32 or train door 36 nearest patrons' arms and shoulders may receive a sleeve 58 while portions of the door near the platform 30 or door header may remain uncovered.
In some embodiments, the sleeve 58 is made of a resilient material. In instances where a frame member is made from an extruded material or otherwise has a generally consistent cross section, the sleeve 58 can be slid over the frame member. The fastener 54 may extend through a hole 60 in the sleeve 58. If a door is equipped with a handle 20 or other hardware, the handle 20 or other hardware may be installed after the sleeve 58 is installed and attached to the frame 26 in a non-conducting manner (such as with non-conducting fasteners or concealed structural fasteners).
In some embodiments, the frame 26 may include one or more retaining structures 62 that fit in one or more corresponding locking structures 64 in the sleeve 58. A retaining structure 62 and corresponding locking structure 64 cooperate to aid in retaining the sleeve 58 on the frame 27. An example of a retaining structure 62 may include a hook, a barb, a ridge, or similar protrusion extending from a surface of the frame 26. An example of a locking structure 64 may include a recess, a channel, a slot, or similar structure formed into the sleeve 58. The retaining structure 62 and locking structure 64 may each be formed of a plurality of discrete protrusions and recesses. However, in embodiments in which the sleeve 58 and/or corresponding frame 26 are formed from extrusions, the retaining structure 62 and locking structure 64 may extend the entire length of the respective sleeve 58 and frame member 27. It should be appreciated that, in some embodiments, the retaining structure 62 may be disposed on the sleeve 58 and the locking structure 64 may be disposed on the frame 26.
As shown in
It should be appreciated that a sleeve 58 may not always be pre-formed and then applied to a frame member 27. Rather, in some embodiments, a sleeve 58 may be formed directly on a frame member 27. For example, a sleeve may be applied to a frame member 27 by spraying a protective or insulating material onto the frame, or dipping the frame member 27 into the material, and then curing the material.
It will be understood that the shape of a frame member 27 and corresponding insulating sleeve 58 will vary from one door system 10 to another. Further, each frame member 27 (e.g., top, bottom, left side, and right side members) may require different sleeves having different geometries to ensure a suitably conforming fit. In some embodiments, a sleeve 58 may generally conform to a majority (e.g., contact over at least 51% of the surface area) of a corresponding shape of a member of a frame 26. In some embodiments, a door system 10 may comprise four frame members 27 having four distinct cross-sectional shapes and may further comprise four sleeves 58 each having cross-sectional shapes corresponding to the frame members.
By fitting a sleeve 58 over all or part of the frame 26 of the door, a user is less likely to be shocked and a spark is less likely to occur when the user or an object contacts or nears the door. Further, it will be understood that the sleeve 58 may be damage resistant by nature of its resiliency, however, in the event of a damaged sleeve 58, the damaged sleeve 58 can be replaced with a new sleeve 58 if needed. All or a portion of a damaged sleeve may be slid off of the frame 26 and a new sleeve may be slid into place.
In some embodiments, the sleeve 58 can be a cover to help protect the frame members 27 from damage and may or may not have insulating properties. In such instances, the sleeve 58 will receive the wear from contact and weathering rather than the frame 26 and the sleeve 58 can be replaced when needed or worn.
In some embodiments, some disassembly of the door system 10 may be needed to install a new sleeve 58. Further, existing frame members 27 which may not initially have sleeves 58 may be fitted with insulating and/or protective sleeves 58. Such a retrofit may allow a formerly non-insulated door system 10 to become insulated or an unprotected door system 10 to become protected. In such embodiments, existing frame members 27 may lack a retaining structure 62, such as illustrated in
Some embodiments of the method 70, particularly when used for retrofitting an existing door, may include removing hardware such as door handles or nosing assemblies prior to the process 74 of encasing the frame member and may include reinstalling the hardware after process 74. Reinstalling the hardware may include cutting, drilling, or otherwise forming openings through the sleeve to allow the hardware components to be reinstalled in their original locations.
It should be appreciated that the various processes of the method 70 discussed above may be optional as not all of the described processes are required for implementing the method. Unless expressly stated as being required, each process should be considered optional.
While the disclosure has been described in terms of exemplary aspects, those skilled in the art will recognize that the disclosure can be practiced with modifications in the spirit and scope of the appended claims. These examples given above are merely illustrative and are not meant to be an exhaustive list of all possible designs, aspects, applications or modifications of the disclosure. It should be appreciated that the geometry and features shown in this disclosure are non-limiting examples.
This patent application claims the benefit of and priority to U.S. Provisional Patent Application No. 63/012,476 filed Apr. 20, 2020 and entitled “SHOCK INSULATING DOOR SYSTEM AND METHOD,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1287622 | Gogay | Dec 1918 | A |
1301930 | Gogay | Apr 1919 | A |
1620933 | Wilcox | Mar 1927 | A |
2755895 | Walterman | Jul 1956 | A |
2837787 | Wright | Jun 1958 | A |
3391509 | Fruman | Jul 1968 | A |
3591985 | Coppins | Jul 1971 | A |
3757473 | Mundy | Sep 1973 | A |
3924373 | Lizdas | Dec 1975 | A |
4107897 | Ullman, Jr. | Aug 1978 | A |
4207707 | Holdiman | Jun 1980 | A |
4223494 | Wendt | Sep 1980 | A |
4242848 | Schoultz | Jan 1981 | A |
4281480 | Wendt | Aug 1981 | A |
RE31536 | Holdiman | Mar 1984 | E |
4467576 | Burgers | Aug 1984 | A |
4505080 | Sailor | Mar 1985 | A |
4513549 | Wendt | Apr 1985 | A |
4768320 | Weller | Sep 1988 | A |
4791771 | Haugaard | Dec 1988 | A |
4793109 | Noach | Dec 1988 | A |
5182880 | Berge, Jr. | Feb 1993 | A |
5203130 | Freelove | Apr 1993 | A |
5214880 | Woodruff | Jun 1993 | A |
5222345 | Riley | Jun 1993 | A |
5249399 | Aulson | Oct 1993 | A |
5339583 | Hrdlicka | Aug 1994 | A |
5454198 | Aulson | Oct 1995 | A |
5669192 | Opdyke | Sep 1997 | A |
5729942 | Moore, Jr. | Mar 1998 | A |
5737878 | Raulerson | Apr 1998 | A |
5758458 | Ridge | Jun 1998 | A |
5775045 | Hill | Jul 1998 | A |
5799443 | Koeniguer | Sep 1998 | A |
5815998 | Wamsher | Oct 1998 | A |
5916077 | Tang | Jun 1999 | A |
5987843 | Canfield | Nov 1999 | A |
6125605 | Young | Oct 2000 | A |
6216395 | Kelly | Apr 2001 | B1 |
6343438 | Boldt | Feb 2002 | B1 |
6357187 | Haldeman | Mar 2002 | B1 |
6703102 | Prescott | Mar 2004 | B1 |
6826877 | Stradel | Dec 2004 | B1 |
7861465 | Christ | Jan 2011 | B1 |
8490350 | Greely | Jul 2013 | B1 |
10208526 | Martin | Feb 2019 | B1 |
10589945 | Martell | Mar 2020 | B2 |
20010034985 | Schweikart | Nov 2001 | A1 |
20010049909 | Homolka | Dec 2001 | A1 |
20030041552 | Hartley | Mar 2003 | A1 |
20040006938 | Schiffmann | Jan 2004 | A1 |
20040088933 | Mayes | May 2004 | A1 |
20040221527 | Sykora | Nov 2004 | A1 |
20050055962 | McElroy | Mar 2005 | A1 |
20050097839 | Kerscher | May 2005 | A1 |
20050155291 | Homolka | Jul 2005 | A1 |
20050204657 | Ellingson | Sep 2005 | A1 |
20050257455 | Fagan | Nov 2005 | A1 |
20060005470 | Mullen | Jan 2006 | A1 |
20060059800 | Minter | Mar 2006 | A1 |
20060272247 | Bartlett | Dec 2006 | A1 |
20070137120 | Raymond | Jun 2007 | A1 |
20080172956 | Boldt | Jul 2008 | A1 |
20080178541 | Kerscher | Jul 2008 | A1 |
20080256881 | Lowry | Oct 2008 | A1 |
20080256897 | Lowry | Oct 2008 | A1 |
20090000224 | Kerscher | Jan 2009 | A1 |
20090049780 | Pulte | Feb 2009 | A1 |
20090064609 | Ouyang | Mar 2009 | A1 |
20090173021 | Katz | Jul 2009 | A1 |
20090211183 | Kerscher | Aug 2009 | A1 |
20090211184 | Kerscher | Aug 2009 | A1 |
20100083597 | Addison | Apr 2010 | A1 |
20100251642 | Erickson | Oct 2010 | A1 |
20100326585 | Wood | Dec 2010 | A1 |
20130219814 | Piccirillo | Aug 2013 | A1 |
20150152659 | Larochelle | Jun 2015 | A1 |
20150159422 | Pettit, III | Jun 2015 | A1 |
20160076298 | Header | Mar 2016 | A1 |
20160130826 | Larochelle | May 2016 | A1 |
20180171699 | Hoogland | Jun 2018 | A1 |
20180258685 | Pardue | Sep 2018 | A1 |
20180266167 | Pinchot | Sep 2018 | A1 |
20180371826 | Strickland | Dec 2018 | A1 |
20190242179 | Wang | Aug 2019 | A1 |
20200165864 | MacDonald | May 2020 | A1 |
20200181971 | Wang | Jun 2020 | A1 |
20200284086 | Volpe | Sep 2020 | A1 |
20210246710 | Ko | Aug 2021 | A1 |
20220098919 | Baizeau | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
2298676 | Aug 1976 | FR |
2078285 | Jan 1982 | GB |
200448617 | May 2010 | KR |
Entry |
---|
European Patent Office, Extended European Search Report dated Sep. 8, 2021, Application No. 21169449.2-1005, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20210324677 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
63012476 | Apr 2020 | US |