1. Field of the Invention
This invention relates to protection of assets in protected areas from shock waves such as produced by explosive detonation.
2. Description of the Related Art
Explosive detonation may produce a shock wave that propagates outwardly from the point of detonation through a media such as air, liquid or a solid. The shock wave is a pressure wave that travels at supersonic speed in the media. The shock wave is characterized by an abrupt, nearly discontinuous change in the characteristics of the medium. Across the shock there is an extremely rapid rise in pressure, temperature and density of the flow. The shock wave carries a large amount of energy in a small volume that can be very destructive. However, the energy of the shock wave dissipates relatively quickly with distance. Furthermore, the accompanying expansion wave approaches and eventually merges with the shock wave, partially cancelling it out. In many explosives, the expansive wave expels metal fragments that provide additional destructive capability.
To protect assets such as buildings or large equipment from the shock waves and fragments resulting from nearby explosive detonations, mass may be placed around the protected area between the asset and an explosive detonation. The mass absorbs the energy in the shock wave through translation of the mass and/or internal friction due to deformation of the mass. Large amounts of mass are required to adequately protect the asset from potential threats. The “mass” may be earth/sand filled plywood walls, earth/sand filled tire walls or vertical reinforced concrete walls. Water filled bladders may be used to absorb the energy in the shock wave and convert it to a vertical spray of water. The mass also provides a barrier to the expelled fragments.
The following is a summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description and the defining claims that are presented later.
A shock wave barrier comprises a periodic structure having the proper symmetry and local contrast modulation of the acoustic index to divert an incident shock wave by using constructive/destructive interference phenomena that produce a “band gap” in the transmission spectrum of the periodic structure.
In an embodiment, the shock wave barrier comprises first and second media arranged in a periodic structure positioned between a protected area and a potential threat. The first and second media have different acoustic indices of refraction that provide a local contrast modulation of the acoustic index. The symmetry of the periodic structure and local contrast modulation define a band gap in a transmission spectrum of the periodic structure. The first and second media are spaced in the periodic structure to position the band gap coincident with the dominant wavelength of a shock wave produced by the potential threat. The periodic structure is suitably configured such that the band gap spans the dominant wavelengths incident on the structure for a variety of potential threats. The dominant wavelength is a function of the blast pressure of the explosive detonation and the range to the explosive detonation. Generally speaking, the energy of the incident shock wave that lies within the band gap is substantially reflected by the periodic structure.
In an embodiment, the periodic structure is defined by the lattice symmetry of a crystal or quasi-crystal that form band gaps. A crystal lattice exhibits translational symmetry if the structure may be shifted at a certain period and remains identical. The quasi-crystal lattice exhibits rotational symmetry if the structure may be rotated through a certain angle (less than 360 degrees) and remains identical. Rotational symmetry may also provide the added benefit of providing no linear path through the structure thereby enhancing the structure's capability as a fragment barrier. Translation or rotational symmetry is a necessary but not sufficient condition to produce a band gap. Certain crystal lattices exhibit both translational and rotational symmetry.
In an embodiment, the local contrast modulation of the acoustic indices is equivalent to a velocity contrast in the shock wave incident upon the first few layers of the periodic structure where the wave constructively and destructively interferes. The wavelength at the center of the band gap is approximately equal to or at least on the order of the spacing ‘d’ in the periodic structure. The local contrast modulation largely determines the width of the band gap; the greater the contrast the greater the width. A minimum contrast modulation of approximately 2:1 is needed for a complete band gap. Contrast modulations of 10:1 or greater may be achieved (e.g. steel rods in air or void spaces in concrete) that produce a 50% band gap or greater for acoustic applications. The width of the band gap is typically referenced to its center wavelength.
In an embodiment, the periodic structure comprises a two-dimensional structure that provides local contrast modulation in a two-dimensions. One example is a two-dimensional array of linear elements in air positioned adjacent to or surrounding a protected area. This periodic structure would present a band gap to shock waves travelling along the ground toward the protected area or anywhere in the plane but not perpendicular to the plane of the shock wave. The linear elements could be retracted to provide ingress or egress to the protected area and then deployed to provide the shock wave barrier.
In an embodiment, the periodic structure comprises a three-dimensional structure that provides local contrast modulation in three-dimensions. One example is a concrete hemisphere or box with a periodic array of void three-dimensional objects positioned over the protected area. This structure would present band gaps to shock waves travelling along the ground toward the protected area or shock waves from airborne explosive detonations travelling down towards the protected area.
In an embodiment, one or more defect cavities are formed in the first few layers of the periodic structure in which the constructive/destructive interference occurs. The defect cavity (ies) creates a transmission resonance or “window” in the band gap that allows energy from the shock wave to be collected by the defect cavities. The defect cavity may be detuned to control the width of the window. The collected energy may be dissipated in the defect cavities by, for example, expelling a material such as water or sand that fills the cavity. The collected energy may be rerouted through the periodic structure around the protected area via a waveguide formed by a pattern of defect cavities.
These and other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description of preferred embodiments, taken together with the accompanying drawings, in which:
a and 1b are planar and perspective views of an embodiment of a shock wave barrier comprising a periodic structure of metal rods in air surrounding a protected area;
a and 3b are plots of a shock wave and its response at the barrier coincident with the band gap;
a and 4b are planar and perspective views of the shock wave barrier illustrating the constructive/destructive interference that occurs in the first few layers of the periodic structure to form the band gap and reflect the energy of the shock wave;
a and 9b are diagrams of a periodic structure that exhibits rotational symmetry;
The present invention describes a shock wave barrier. This is accomplished with a periodic structure having the proper symmetry and local contrast modulation of the acoustic index to divert an incident shock wave by using the constructive/destructive interference phenomena that produces a “band gap” in the transmission spectrum of the periodic structure. In general, shock wave energy at wavelengths within the band gap is reflected from the structure. Defect cavities may be formed in the periodic structure to create transmission resonances or “windows” in the band gap. A portion of the incident energy passes through the window and is concentrated in the defect cavities where it is dissipated by other means. The band gap can be quite wide, at least 50% of the center wavelength, and thus can provide an effective barrier from a wide variety of threats with varying blast pressure and range. The structure may be periodic in two or three dimensions providing a band gap barrier in two or three dimensions, respectively.
Referring now to
Periodic structure 16 is configured to produce constructive/destructive interference of an incident shock wave to define band gap 24. The symmetry, local contrast modulation, number of layers and spacing of the periodic structure form band gap 24 and determine its center wavelength, width and definition.
Periodic structure 16 exhibits a symmetry that will form a band gap. There are many crystal and quasi-crystal lattices that are known to form band gaps in crystalline periodic structures. To form periodic structure 16 the first media (rods) 12 are arranged in a pattern corresponding to the vertices of the crystal or quasi-crystal lattice within the second media (air) 14. In this particular embodiment, the periodic structure is based on a square crystal lattice. Other patterns based on, for example, a triangular or honeycomb crystal lattice may be used.
A crystal lattice exhibits translational symmetry if the structure can be translated by a certain distance and remains identical. The quasi-crystal lattice exhibits rotational symmetry if the structure may be rotated through a certain angle (less than 360 degrees) and remains identical. Rotational symmetry may also provide the added benefit of providing no linear path through the structure thereby enhancing the structure's capability as a fragment barrier. Certain crystal lattices exhibit both translational and rotational symmetry. Translation or rotational symmetry is a necessary but not sufficient condition to produce a band gap. To date, no general solution has been identified to specify all types of crystals and quasi-crystals that will form band gaps.
Periodic structure 16 exhibit a minimum local contrast modulation of the acoustic index of approximately 2:1 to form a complete band gap. This modulation produces a velocity contrast in the shock wave incident upon the first layers of the periodic structure where the wave constructively and destructively interferes. Contrast modulations of 10:1 or greater may be achieved (e.g. steel rods in air or void spaces (air) in concrete) that produce a 50% band gap or greater. The width of the band gap is typically referenced to its center wavelength.
The ‘acoustic index’ of refraction is defined as the ratio of the speed of sound in a control medium to the speed of sound in the material of interest. We have selected diamond as the control medium although any medium can be used. When computing the contrast or local modulation of the acoustic index the control medium cancels out leaving only the properties of the first and second media. Table 1 lists a number of different media, the speed of sound in the material and acoustic indices. The Table is not an exhaustive list of usable media, merely representative. As shown a combination of metal and air produces modulations in excessive of 10:1.
Periodic structure 16 includes multiple layers 18 to adequately establish and define band gap 24. As shown in
The wavelength at the center of the band gap is approximately equal to or at least on the order of the spacing ‘d’ in periodic structure 16. Secondary factors such as element diameter, element shape and small positional placement of the elements that are slightly symmetry braking will contribute to the exact spacing ‘d’ required for a specific center wavelength.
In an embodiment, periodic structure 18 may be actively controlled to open or close the band gap, or shift the edges of the band gap. The periodic structure may be actively controlled by modulating the contrast of the acoustic indices, changing the geometric arrangement or altering the symmetry.
Referring now to
Simplifying, the blast pressure produced by the explosive detonation forms the initial shock wave. The response 34 of the shock wave as it arrives at the barrier may be characterized by a dominant wavelength 36. Most of the energy in the shock wave is centered about the dominant wavelength. This wavelength is to a large extent determined by the amount and type of explosive. As the shock wave propagates through air towards the protected area and decays its dominant wavelength shifts downwards. Consequently, the dominant wavelength incident on the periodic structure is determined by the initial blast pressure and the range. Depending upon the application (protected area and asset) and the potential threats (initial blast pressures and ranges), the periodic structure is configured to present a band gap that spans the dominant wavelengths of the incident shock wave for a variety of potential threats. The band gap is also positioned to reflect those wavelengths that most efficiently and destructively couple to the asset.
When shock wave 32 reaches periodic structure 16 energy within band gap 24 will constructively and destructively interfere and be substantially reflected away from the structure as reflected energy 37 while energy outside the band gap will be transmitted through the structure. The incident shock wave interacts with the rods in the periodic structure to produce secondary waves 38. These secondary waves intersect and produce destructive interference and cancellation of a wide band of wavelengths to form the band gap. The energy outside the band gap is naturally attenuated or does not couple destructively to the asset.
In certain situations it may not be desirable to reflect all or even a substantial portion of the shock wave. The reflection may cause collatoral damage of other nearby assets. As shown in
As shown in
As shown in
As shown in
The periodic structure may comprise a three-dimensional structure that provides local contrast modulation in two dimensions. This structure comprises three-dimensional objects (spheres, cubes, rods, etc.) arranged with certain symmetry in a contrasting media that form a band gap.
Referring now to
Referring now to
As described above, the shock wave barrier may be configured to protect an area and an asset from shock waves travelling in air. The barrier may be configured to protect an area and an assets from shock waved travelling in liquid (e.g. the ocean), in solids (e.g. tank armor) or through the ground towards an underground area. The dominant wavelengths of the shock wave will change, hence the spacing of the periodic structure will change to position a band gap coincident with the dominant wavelength but the principle remains the same.
While several illustrative embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Such variations and alternate embodiments are contemplated, and can be made without departing from the spirit and scope of the invention as defined in the appended claims.
This application claims benefit of priority under 35 U.S.C. 120 as a continuation-in-part of U.S. application Ser. No. 12/473,275 entitled “Acoustic Crystal Explosives” and filed on May 28, 2009 now U.S. Pat. No. 8,082,844, the entire contents of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2393350 | Wiedman | Jan 1946 | A |
3394843 | Grady, Jr. et al. | Jul 1968 | A |
4055247 | Benedick et al. | Oct 1977 | A |
4145972 | Menz et al. | Mar 1979 | A |
4248342 | King et al. | Feb 1981 | A |
4325304 | Ormiston | Apr 1982 | A |
4325309 | King et al. | Apr 1982 | A |
4347796 | King et al. | Sep 1982 | A |
4389947 | King et al. | Jun 1983 | A |
4475461 | Durrell | Oct 1984 | A |
4899663 | Thorn | Feb 1990 | A |
4976199 | Beukes et al. | Dec 1990 | A |
5076168 | Yoshida et al. | Dec 1991 | A |
5214235 | Froeschner | May 1993 | A |
5375527 | Nakajima | Dec 1994 | A |
5388521 | Coursen | Feb 1995 | A |
5394786 | Gettle et al. | Mar 1995 | A |
6298766 | Mor | Oct 2001 | B1 |
7213494 | James | May 2007 | B2 |
7292740 | Barker et al. | Nov 2007 | B1 |
7418373 | Heck, Sr. | Aug 2008 | B2 |
7421936 | Barger et al. | Sep 2008 | B2 |
7437987 | Ohnstad et al. | Oct 2008 | B1 |
7575797 | Karr et al. | Aug 2009 | B2 |
7878103 | Imholt et al. | Feb 2011 | B2 |
7886667 | Baker et al. | Feb 2011 | B1 |
20030183109 | Rudhard et al. | Oct 2003 | A1 |
20040154463 | Edberg et al. | Aug 2004 | A1 |
20050016407 | Bernard | Jan 2005 | A1 |
20070144337 | Zhang et al. | Jun 2007 | A1 |
20070245887 | James | Oct 2007 | A1 |
20080257137 | James | Oct 2008 | A1 |
20080264245 | Barnes et al. | Oct 2008 | A1 |
20080282925 | Lownds et al. | Nov 2008 | A1 |
20100000399 | Barnes et al. | Jan 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 12473275 | May 2009 | US |
Child | 13093602 | US |