The present invention relates to a treatment system for percutaneous coronary angioplasty or peripheral angioplasty in which a dilation catheter is used to cross a lesion in order to dilate the lesion and restore normal blood flow in the artery. It is particularly useful when the lesion is a calcified lesion in the wall of the artery.
Calcified lesions, currently treated with angioplasty balloons, require high pressures (sometimes as high as 10-15 or even 30 atmospheres) to break the calcified plaque and push it back into the vessel wall. With such pressures comes trauma to the vessel wall which can contribute to vessel rebound, dissection, thrombus formation, and a high level of restenosis. Non-concentric calcified lesions can result in undue stress to the free wall of the vessel when exposed to high pressures. An angioplasty balloon when inflated to high pressures can have a specific maximum diameter to which it will expand but the opening in the vessel under a concentric lesion will typically be much smaller. As the pressure is increased to open the passage way for blood the balloon will be confined to the size of the opening in the calcified lesion (before it is broken open). As the pressure builds a tremendous amount of energy is stored in the balloon until the calcified lesion breaks or cracks. That energy is then released and results in the rapid expansion of the balloon to its maximum dimension and may stress and injure the vessel walls.
Recently, a new system and method has been contemplated for breaking up calcium deposits in, for example, arteries and veins. Such a system is described, for example in U.S. Patent Publication No. 2009/0312768, Published Dec. 17, 2009. Embodiments described therein include a catheter having balloon, such as an angioplasty balloon, at the distal end thereof, arranged to be inflated with a fluid. Disposed within the balloon is a shock wave generator that may take the form of, for example, a pair of electrodes, which are coupled to a high voltage source at the proximal end of the catheter through a connector. When the balloon is placed adjacent a calcified region of a vein or artery and a high voltage pulse is applied across the electrodes, a shock wave is formed that propagates through the fluid and impinges upon the wall of the balloon and the calcified region. Repeated pulses break up the calcium without damaging surrounding soft tissue.
Each high voltage pulse causes an arc to form across the electrodes. The arc in turn causes a steam bubble to form. Each arc results in intense heat and energy for a brief period of time. Inside the small confines of tiny angioplasty balloons the fluid can warm up and become hot enough to damage tissue unless steps are taken to control the amount of energy released into the fluid. Just a two degree Celsius elevation in temperature above body temperature can result in tissue damage.
The amount of energy to assure the formation of the steam bubble and arc can be highly variable from arc to arc. Therefore, if the same amount of energy is used to assure the formation of each bubble and arc, more energy than is necessary will be used to form many of the bubbles and arcs. Excessive heating of the fluid within the balloon may result. Also, because greater applied energies create larger bubbles at the electrodes, the excessive energy will produce a larger bubble than required which can unduly stress the balloon walls.
Another consideration is the amount of energy represented by the high voltage applied to the electrodes. Each high voltage pulse removes a portion of the electrode material. Since the size of the electrodes must be small in order to fit into the calcified vein or artery, they are only capable of sustaining a limited numbers of high voltage pulses sufficient to form the shock wave resulting electrical arc.
Hence, there is a need in the art to be able to control the amount of energy required to produce the bubbles and arcs. It would also be desirable to be able to produce the bubbles and arcs with less energy than hereto for possible. The present invention addresses these and other issues.
In one embodiment, a shock wave catheter system includes a catheter and a power source. The catheter has an elongated carrier and a balloon about the carrier in sealed relation thereto. The balloon is arranged to receive a fluid therein that inflates the balloon. The catheter further includes an arc generator including at least two electrodes within the balloon. The power source is configured to deliver a first electrical voltage across the at least two electrodes that grows a bubble at one of the at least two electrodes and then thereafter delivers a second electrical voltage across the at least two electrodes to create an arc across the at least two electrodes to rapidly expand the bubble to form a shock wave within the balloon.
The second electrical voltage is significantly greater than the first electrical voltage. The first electrical voltage is on the order of 50 volts and the second electrical voltage is between 300 and 10,000 volts.
The power source may be configured to hold the first electrical voltage for a first time period and to hold the second electrical voltage for a second time period, the first time period being significantly longer in length than the second time period. The first time period may on the order of two milliseconds and the second time period may be on the order of one-half microsecond.
The balloon may be an angioplasty balloon.
According to other embodiments, a shock wave catheter system includes a catheter and a power source. The catheter has an elongated carrier and a balloon about the carrier in sealed relation thereto. The balloon is arranged to receive a fluid therein that inflates the balloon. The catheter further has an arc generator including at least two electrodes within the balloon. The power source is coupled to the at least two electrodes and is configured to grow a bubble at one of the at least two electrodes and then thereafter to rapidly expand the bubble to form a shock wave within the balloon.
In another embodiment, a method of producing an electrohydraulic shock wave includes growing a bubble within a fluid during a first time period and thereafter, rapidly expanding the bubble during a second time period.
The growing step may include providing at least two electrodes within the fluid and delivering a first voltage to the at least two electrodes during a first time period.
The expanding step may include delivering a second voltage to the at least two electrodes during a second time period. The second voltage may be greater than the first voltage and the first time period may be longer than the second time period. The second voltage may be between 300 and 10,000 volts. The first time period may be on the order of two milliseconds and the second time period may be on the order of one-half microsecond.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further features and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify identical elements, and wherein:
The catheter 11 includes an elongated carrier, such as a hollow sheath 12 and a dilating balloon 14 formed about the sheath 12 in sealed relation thereto at a seal 16. The balloon 14 has a tubular extension 18 which forms with the sheath 12 a channel 20 for admitting a fluid into the balloon 14. The sheath 12 has a longitudinal lumen 22 through which a guide wire (not shown) may be received for directing the catheter 11 to a desired location within a vein or artery, for example.
The catheter 11 further includes an arc generator 24 within the balloon 14. The arc generator, as may be best seen in
As may be seen in
The electrical arcs between electrodes 26 and 28 in the fluid are used to generate shock waves in the fluid. Each pulse of high voltage applied to the electrodes 26 and 28 forms an arc across the electrodes. The voltage pulses may have amplitudes as low as 500 volts, but preferably, the voltage amplitudes are in the range of 1000 volts to 10,000 volts The balloon 14 may be filled with water or saline in order to gently fix the balloon in the walls of the artery or vein, for example, in direct proximity with the calcified lesion. The fluid may also contain an x-ray contrast to permit fluoroscopic viewing of the catheter during use. Once the catheter 11 is positioned with the guide wire (not shown), the physician or operator can start applying the high voltage pulses to the electrodes to form a plurality of discrete shock waves that crack the calcified plaque. Such shock waves will be conducted through the fluid, through the balloon, through the blood and vessel wall to the calcified lesion where the energy will break the hardened plaque without the application of excessive pressure by the balloon on the walls of the artery.
The source 30 includes control logic 70, a first transistor 72, a second transistor 74, and output terminals 76 and 78. Output terminal 76 is arranged to coupled through a connector 38 (
Initially, the control logic 70 delivers a two millisecond (2 ms) control pulse 80 to the gate of transistor 72. This causes a low (for example, 25 ma) current through the electrodes and a resistor 73. The low current applied for 2 ms forms a bubble on one of the electrodes of a predictable size. After the 2 ms, the control logic 70 turns transistor 74 on hard for 500 nanoseconds (500 ns). This applies the full 3,000 volts to the electrodes. The control logic 70 may turn transistor 74 on hard immediately after the 2 ms period or a short time thereafter, as for example, 10 microseconds after the 2 ms period. An arc and shock wave will occur essentially immediately. Since the high voltage is applied for only a short time, here 500 ns, a reduced amount of energy is delivered to the fluid within the balloon for generating each shock wave. As a result, much less heat is generated in the fluid within the balloon.
As may be seen from the foregoing, the high voltage pulse is applied for a much shorter period of time to produce the arc and shock wave because the bubble had already been pre-grown by the preceding low voltage and current. The overall arc energy is lower and the steam bubble will be smaller. This results in less energy being applied to the fluid within the balloon for each generated shock wave. The fluid is therefore heated less and there is less stress on the wall of the balloon.
While particular embodiments of the present invention have been shown and described, modifications may be made. It is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention as defined by those claims.
The present application claims the benefit of copending U.S. Provisional Patent Application Ser. No. 61/684,398, filed Aug. 17, 2012, which application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3785382 | Schmidt et al. | Jan 1974 | A |
3902499 | Shene | Sep 1975 | A |
4027674 | Tessler et al. | Jun 1977 | A |
4662126 | Malcolm | May 1987 | A |
4685458 | Leckrone | Aug 1987 | A |
4809682 | Forssmann et al. | Mar 1989 | A |
4900303 | Lemelson | Feb 1990 | A |
5009232 | Hassler et al. | Apr 1991 | A |
5057103 | Davis | Oct 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5152767 | Sypal et al. | Oct 1992 | A |
5152768 | Bhatta | Oct 1992 | A |
5176675 | Watson et al. | Jan 1993 | A |
5245988 | Einars et al. | Sep 1993 | A |
5246447 | Rosen et al. | Sep 1993 | A |
5281231 | Rosen et al. | Jan 1994 | A |
5321715 | Trost | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5336234 | Vigil et al. | Aug 1994 | A |
5362309 | Carter | Nov 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5395335 | Jang | Mar 1995 | A |
5417208 | Winkler | May 1995 | A |
5425735 | Rosen et al. | Jun 1995 | A |
5472406 | de la Torre et al. | Dec 1995 | A |
5582578 | Zhong et al. | Dec 1996 | A |
5603731 | Whitney | Feb 1997 | A |
5609606 | O'Boyle | Mar 1997 | A |
5662590 | de la Torre et al. | Sep 1997 | A |
5931805 | Brisken | Aug 1999 | A |
6007530 | Dornhofer et al. | Dec 1999 | A |
6033371 | Torre et al. | Mar 2000 | A |
6083232 | Cox | Jul 2000 | A |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217531 | Reitmajer | Apr 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6287272 | Brisken et al. | Sep 2001 | B1 |
6352535 | Lewis et al. | Mar 2002 | B1 |
6367203 | Graham et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6406486 | de la Torre et al. | Jun 2002 | B1 |
6514203 | Bukshpan | Feb 2003 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6589253 | Cornish et al. | Jul 2003 | B1 |
6607003 | Wilson | Aug 2003 | B1 |
6638246 | Naimark et al. | Oct 2003 | B1 |
6652547 | Rabiner et al. | Nov 2003 | B2 |
6736784 | Menne et al. | May 2004 | B1 |
6740081 | Hilal | May 2004 | B2 |
6755821 | Fry | Jun 2004 | B1 |
6989009 | Lafontaine | Jan 2006 | B2 |
7241295 | Maguire | Jul 2007 | B2 |
7569032 | Naimark et al. | Aug 2009 | B2 |
8556813 | Cioanta et al. | Oct 2013 | B2 |
8728091 | Hakala et al. | May 2014 | B2 |
9011463 | Adams et al. | Apr 2015 | B2 |
20010044596 | Jaafar | Nov 2001 | A1 |
20020045890 | Celliers et al. | Apr 2002 | A1 |
20020177889 | Brisken et al. | Nov 2002 | A1 |
20030004434 | Greco et al. | Jan 2003 | A1 |
20030176873 | Chernenko et al. | Sep 2003 | A1 |
20030229370 | Miller | Dec 2003 | A1 |
20040044308 | Naimark et al. | Mar 2004 | A1 |
20040097963 | Seddon | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040162508 | Uebelacker | Aug 2004 | A1 |
20040254570 | Hadjicostis et al. | Dec 2004 | A1 |
20050015953 | Keidar | Jan 2005 | A1 |
20050021013 | Visuri et al. | Jan 2005 | A1 |
20050251131 | Lesh | Nov 2005 | A1 |
20060004286 | Chang et al. | Jan 2006 | A1 |
20060184076 | Gill et al. | Aug 2006 | A1 |
20060190022 | Beyar et al. | Aug 2006 | A1 |
20070088380 | Hirszowicz et al. | Apr 2007 | A1 |
20070239082 | Schultheiss et al. | Oct 2007 | A1 |
20070239253 | Jagger et al. | Oct 2007 | A1 |
20070244423 | Zumeris et al. | Oct 2007 | A1 |
20080097251 | Babaev | Apr 2008 | A1 |
20080188913 | Stone et al. | Aug 2008 | A1 |
20090041833 | Bettinger et al. | Feb 2009 | A1 |
20090247945 | Levit et al. | Oct 2009 | A1 |
20090254114 | Hirszowicz et al. | Oct 2009 | A1 |
20090312768 | Hawkins et al. | Dec 2009 | A1 |
20100016862 | Hawkins et al. | Jan 2010 | A1 |
20100036294 | Mantell et al. | Feb 2010 | A1 |
20100114020 | Hawkins et al. | May 2010 | A1 |
20100114065 | Hawkins et al. | May 2010 | A1 |
20100121322 | Swanson | May 2010 | A1 |
20100305565 | Truckai et al. | Dec 2010 | A1 |
20110034832 | Cioanta et al. | Feb 2011 | A1 |
20110118634 | Golan | May 2011 | A1 |
20110166570 | Hawkins et al. | Jul 2011 | A1 |
20110257523 | Hastings et al. | Oct 2011 | A1 |
20110295227 | Hawkins et al. | Dec 2011 | A1 |
20120071889 | Mantell et al. | Mar 2012 | A1 |
20120095461 | Herscher et al. | Apr 2012 | A1 |
20120203255 | Hawkins et al. | Aug 2012 | A1 |
20120221013 | Hawkins et al. | Aug 2012 | A1 |
20130030431 | Adams | Jan 2013 | A1 |
20130030447 | Adams | Jan 2013 | A1 |
20130150874 | Kassab | Jun 2013 | A1 |
20140046229 | Hawkins et al. | Feb 2014 | A1 |
20140052147 | Hakala et al. | Feb 2014 | A1 |
20140074111 | Hakala et al. | Mar 2014 | A1 |
20140243820 | Adams et al. | Aug 2014 | A1 |
20140243847 | Hakala et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
3038445 | May 1982 | DE |
0442199 | Aug 1991 | EP |
0571306 | Nov 1993 | EP |
62-275446 | Nov 1987 | JP |
6-125915 | May 1994 | JP |
7-47135 | Feb 1995 | JP |
10-99444 | Apr 1998 | JP |
10-513379 | Dec 1998 | JP |
2002-538932 | Nov 2002 | JP |
2004-81374 | Mar 2004 | JP |
2005-95410 | Apr 2005 | JP |
2005-515825 | Jun 2005 | JP |
2006-516465 | Jul 2006 | JP |
9624297 | Aug 1996 | WO |
2004069072 | Aug 2004 | WO |
2006127158 | Nov 2006 | WO |
2007149905 | Dec 2007 | WO |
2009121017 | Oct 2009 | WO |
2009152352 | Dec 2009 | WO |
2010014515 | Feb 2010 | WO |
2011143468 | Nov 2011 | WO |
2013059735 | Apr 2013 | WO |
Entry |
---|
Advisory Action Received for U.S. Appl. No. 12/581,295, mailed on Jul. 3, 2014, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 13/831,543, mailed on Oct. 8, 2014, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/271,342, mailed on Sep. 2, 2014, 6 pages. |
Notice of Acceptance Received for Australian Patent Application No. 2009257368, mailed on Aug. 28, 2014, 2 pages. |
Doug Hakala, “Unpublished U.S. Appl. No. 14/515,130, filed Oct. 15, 2014, titled “Low Profile Electrodes for an Angioplasty Shock Wave Catheter””. |
Non Final Office Action received for U.S. Appl. No. 13/465,264, mailed on Oct. 29, 2014, 13 pages. |
Non Final Office Action received for U.S. Appl. No. 13/646,570, mailed on Oct. 29, 2014, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/646,583, mailed on Oct. 31, 2014, 8 pages. |
Written Opinon received for PCT Patent Application No. PCT/US2009/047070, mailed on Jan. 19, 2010, 5 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2009/047070, mailed on Dec. 23, 2010, 7 pages. |
International Search Report received for PCT Patent Application No. PCT/US2009/047070, mailed on Jan. 19, 2010, 4 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/047070, mailed on Feb. 21, 2013, 7 pages. |
International Written Opinion received for PCT Patent Application No. PCT/US2011/047070, mailed on May 1, 2012, 5 pages. |
International Search Report received for PCT Patent Application No. PCT/US2012/023172, mailed on Sep. 28, 2012, 3 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/031805 mailed on May 20, 2013, 13 pages. |
Adams et al., U.S. Appl. No. 13/534,658, filed Jun. 27, 2012, titled “Shock Wave Balloon Catheter with Multiple Shock Wave Sources”. |
Hakala et al., U.S. Appl. No. 13/615,107, filed Sep. 13, 2012, titled “Shockwave Catheter System with Energy Control”. |
Non Final Office Action received for U.S. Appl. No. 12/482,995, mailed on Jul. 12, 2013, 11 pages. |
Hakala et al., U.S. Appl. No. 13/831,543, filed Mar. 14, 2013, titled “Low Profile Electrodes for an Angioplasty Shock Wave Catheter”, 52 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/023172, mailed on Aug. 15, 2013, 6 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/039987, mailed on Sep. 23, 2013, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/048277, mailed on Oct. 2, 2013, 14 pages. |
Office Action received for Australian Patent Application No. 2009257368, issued on Jul. 31, 2013, 4 pages. |
Office Action received for Japanese Patent Application No. 2011-513694, mailed on Aug. 27, 2013, 6 pages (3 pages of English Translation). |
Rosenschein et al., “Shock-Wave Thrombus Ablation, a New Method for Noninvasive Mechanical Thrombolysis”, The American Journal of Cardiology, vol. 70, Nov. 15, 1992, pp. 1358-1361. |
Zhong et al., “Transient Oscillation of Cavitation Bubbles Near Stone Surface During Electohydraulic Lithotripsy”, Journal of Endourology, vol. 11, No. 1, Feb. 1997, pp. 55-61. |
Extended European Search Report (includes Supplementary European Search Report and Search Opinion) received for European Patent Application No. 097636401, mailed on Oct. 10, 2013, 5 pages. |
Final Office Action received for U.S. Appl. No. 13/267,383, mailed on Oct. 25, 2013, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/059533, mailed on Nov. 7, 2013, 14 pages. |
Hakala et al., “Unpublished U.S. Appl. No. 14/271,276, filed May 6, 2014, titled “Shockwave Catheter System with Energy Control””, 20 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/055431, mailed on Nov. 12, 2013, 9 pages. |
Advisory Action received for U.S. Appl. No. 13/267,383, mailed on Jan. 6, 2014, 4 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/501,619, mailed on Jan. 28, 2014, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/049,199, mailed on Feb. 4, 2014, 8 pages. |
Final Office Action received for U.S. Appl. No. 12/482,995, mailed on Feb. 20, 2014, 11 pages. |
Non Final Office Action received for U.S. Appl. No. 12/482,995, mailed on Aug. 13, 2014, 10 pages. |
Final Office Action received for U.S. Appl. No. 12/581,295, mailed on Jun. 5, 2014, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/581,295, mailed on Mar. 10, 2014, 11 pages. |
Final Office Action received for U.S. Appl. No. 13/049,199, mailed on Aug. 11, 2014, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/061,554, mailed on Mar. 12, 2014, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 14/061,554, mailed on Apr. 25, 2014, 8 pages. |
Non Final Office Action received for U.S. Appl. No. 14/079,463, mailed on Mar. 4, 2014, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 14/079,463, mailed on Apr. 1, 2014, 5 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/271,276, mailed on Aug. 4, 2014, 7 pages. |
Office Action received for Australian Patent Application No. 2009257368, issued on Apr. 28, 2014, 4 pages. |
Office Action Received for Japanese Patent Application No. 2011-513694, mailed on Jun. 10, 2014, (See Communication under 37 CFR § 1.98(a) (3)). |
Adams et al., “Unpublished U.S. Appl. No. 14/271,342, filed May 6, 2014, titled “Shock Wave Balloon Catheter with Multiple Shock Wave Sources””, 21 pages. |
Adams, John M., “Unpublished U.S. Appl. No. 14/218,858, filed Mar. 18, 2014, titled “Shockwave Catheter System with Energy Control””, 24 pages. |
Cleveland et al., “The Physics of Shock Wave Lithotripsy”, Extracorporeal Shock Wave Lithotripsy Part IV, Chapter 38, 2012, pp. 316-332. |
Connors et al., “Renal Nerves Mediate Changes in Contralateral Renal Blood Flow after Extracorporeal Shockwave Lithotripsy”, Nephron Physiol., vol. 95, 2003, pp. 67-75. |
Gambihler et al., “Permeabilization of the Plasma Membrane of Ll210 Mouse Leukemia Cells Using Lithotripter Shock Waves”, The Journal of Membrane Biology, vol. 141, 1994, pp. 267-275. |
Grassi et al., “Novel Antihypertensive Therapies: Renal Sympathetic Nerve Ablation and Carotid Baroreceptor Stimulation”, Curr. Hypertens Rep., vol. 14, 2012, pp. 567-572. |
Kodama et al., “Shock Wave-Mediated Molecular Delivery Into Cells”, Biochimica et Biophysica Acta, vol. 1542, 2002, pp. 186-194. |
Lauer et al., “Shock Wave Permeabilization as a New Gene Transfer Method”, Gene Therapy vol. 4, 1997, pp. 710-715. |
Number | Date | Country | |
---|---|---|---|
20140052145 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61684398 | Aug 2012 | US |