The present invention is in the field of footwear, and provides a shoe sole construction having both cushioning and energy return.
The human foot daily encounters a variety of impact forces as a consequence of individual activity. Activities such as standing, walking, running, and jumping exert forces on an individual's feet that can cause soreness, fatigue, and injury.
Many different theories as to the optimum support and cushioning in a shoe design have been suggested in the past. The most common view however is that an average consumer will benefit from an appropriate amount of arch support, along with resiliency and cushioning in the shoe sole. A properly designed shoe will allow the consumer to be on their feet for long period of time without discomfort or pain.
A number of shoe designs providing shock absorption and/or resiliency have been proposed. These include soles containing springs, gels, or foams that store energy during compression and return energy during expansion. However, these solutions can increase weight or cost of the shoe and may have an unnatural feel.
Thus, there continues to be a need for a shoe sole construction that provides improved cushioning, energy return, and responsiveness throughout the life of the shoe.
Accordingly, embodiments of the invention include a shoe sole construction that provides a user with improved cushioning and energy return. In one embodiment of the invention, a shoe sole including a footbed, a midsole, and an outsole is provided. The footbed has a top layer, a middle layer, and a bottom layer. The bottom layer of the footbed includes a plurality of deformable semi-tubular elements that are arranged transversely to a longitudinal axis of the shoe sole and protrude downward from the middle layer of the footbed to the midsole. The midsole has a top surface and a bottom surface. The top surface of the midsole includes a plurality of trough-shaped cavities that are arranged transversely to the longitudinal axis of the shoe sole and correspond to the plurality of semi-tubular elements such that the semi-tubular elements nest in the trough-shaped cavities. Additionally, the outsole includes at least one ground contacting surface.
In some embodiments, the plurality of semi-tubular elements includes an outer wall, an inner wall, a front end, a rear end, a first open side, and a second open side. The first and second open sides permit airflow through the plurality of semi-tubular elements when coupled to the middle layer of the footbed. In some embodiments, the plurality of semi-tubular elements also includes at least one notch that improves the deformation of the plurality of semi-tubular elements to compress under load into the plurality of trough-shaped cavities of the midsole. In some embodiments, the plurality of semi-tubular elements are formed of a polyurethane material.
In some embodiments, the middle layer of the footbed includes a dispersion plate. The dispersion plate has a top surface, and a bottom surface. In some embodiments, the dispersion plate is formed of a material such as plastic, thermoplastic polyurethane, and nylon. In some embodiments, the plurality of semi-tubular elements are coupled to the bottom surface of the dispersion plate. In some embodiments, the bottom surface of the midsole includes a plurality of protrusions that correspond to the plurality of trough-shaped cavities of the top surface of the midsole.
In a preferred embodiment of the invention, a shoe sole including a footbed, a midsole, and an outsole is provided. The footbed has a top layer, a middle layer, and a bottom layer. The top layer of the footbed is an open cell foam material. The middle layer of the footbed is a dispersion plate. The bottom layer of the footbed includes a plurality of deformable, resilient, semi-tubular elements that are arranged transversely to a longitudinal axis of the shoe sole. The plurality of semi-tubular elements are affixed to the bottom surface of the dispersion plate such that the semi-tubular elements protrude downwardly from the dispersion plate to the midsole. The plurality of semi-tubular elements includes an outer wall, an inner wall, a front end, a rear end, a first open side, a second open side, and at least one notch. The at least one notch improves the resilience and deformation of the semi-tubular elements so that they may compress under load into a plurality of trough-shaped cavities of the midsole.
The midsole has a top surface and a bottom surface. The top surface of the midsole includes the plurality of trough-shaped cavities that are arranged transversely to the longitudinal axis of the shoe sole. The plurality of trough-shaped cavities correspond to the plurality of semi-tubular elements such that the semi-tubular elements that protrude downward are received in corresponding trough-shaped cavities of the midsole. The semi-tubular elements will deform under load, providing improved cushioning when the semi-tubular elements are compressed, and also provide a spring effect to return the semi-tubular elements to their default uncompressed state. The semi-tubular elements may have a depth greater than a depth of a corresponding trough shaped cavity whereby the footbed is held in a raised position above the top surface of the midsole. The separation between the lower surface of the footbed and the top surface of the midsole is smaller in forefoot area and greater in the heel area. The separation provides shock absorption and resilience in the shoe because it allows the semi-tubular elements to deform under load and absorb impact shocks as the footbed travels from its raised position, to a compressed position with a lower surface of footbed located against the top surface of the midsole.
The bottom surface of the midsole includes a plurality of protrusions that correspond to the plurality of trough-shaped cavities. Additionally, the outsole includes at least one ground contacting surface.
The figures show an exemplary embodiment of the invention. Referring to
As shown in
In preferred embodiments, the top layer 21 of the footbed 20 is formed of a slow recovery, open cell foam material that permits airflow through the top layer 21. Polyurethane and/or ethylene-vinyl acetate (EVA) foams may be used for top layer 21. Top layer 21 provides an initial comfortable feel and aeration for a user's foot. The bottom surface 23 of the top layer 21 may simply rest on, or be adhered to, or otherwise coupled to, the top surface 25 of the dispersion plate 24 by any conventional fashion known to those skilled in the art. Such methods may include adhesives, sewing, or welding, either in selected locations, around the perimeter thereof, or more generally.
In preferred embodiments, the dispersion plate 24 is formed of thermoplastic polyurethane (TPU). In some embodiments, the dispersion plate 24 is formed of nylon. In other embodiments, the dispersion plate 24 is formed of another polymer or copolymer material. In some embodiments, the dispersion plate 24 may include or be formed of a three dimensional mesh fabric, which may include voids in the mesh which allow passage of air. The dispersion plate 24 disperses a user's weight evenly across the plurality of semi-tubular elements 30 while also providing aeration for the user's foot.
The semi-tubular elements 30 are open-ended U-shaped tubes that have the upper ends of their āUā shape affixed to the lower surface 26 of dispersion plate 24. The semi-tubular elements are preferably formed from a deformable material. In one embodiment, the semi-tubular elements 30 are formed of ethyl vinyl acetate.
The plurality of semi-tubular elements 30 are intermittently placed along a portion of, or the entire length of, the footbed 20. The semi-tubular elements 30 are generally positioned transversely to a longitudinal axis of the shoe sole 10. However, as seen in
Semi-tubular element 30 has a front end 34 and a rear end 33 which are connected to the dispersion plate 24. In one embodiment, the semi-tubular element 30 has one or more laterally-extending notches 37a, 37b, 37c, and 37d (collectively referred to as notch 37 or notches 37) and apex notches 39a, and 39b collectively referred to as apex notch 39 or apex notches 39) to improve the resilience and deformation of the semi-tubular element 30. Notches 37 and 39 create crumple zones that, when compressed under load, permit the plurality of semi-tubular elements 30 to collapse and absorb shock. Additionally, notches 37 and 39 allow the semi-tubular element 30 to bounce back to its original state when the compressing load is removed.
Different sized notches 37 and 39 in various locations on the semi-tubular elements 30 can be utilized for improved shock absorption and energy return. On one embodiment, as seen in
Apex notches 39 may include apex notch 39a located adjacent the first opening 35 at apex 38, and apex notch 39b located adjacent the second opening 36 at apex 38. Apex notches 39 may extend partially across the width of the semi-tubular elements 30 as seen in
In preferred embodiments, the plurality of semi-tubular elements 30 are formed of an injection molded ethylene-vinyl acetate material. In other embodiments, the semi-tubular elements 30 are formed of a similarly appropriate material, such as polyurethane, silicone, rubber, thermoplastic rubber, and thermoplastic elastomers.
The semi-tubular elements 30 preferably have varying dimensions depending on their respective positioning along the longitudinal axis of the shoe sole 10. For example, as depicted in
In one embodiment, the plurality of semi-tubular elements 30 are affixed to the dispersion plate 24 by attaching the front end 33 and rear end 34 to the dispersion plate 24 as seen in
The plurality of semi-tubular elements 30 coupled to the dispersion plate 24 provide a durable and breathable footbed 20 that provides the necessary support for long-term comfort and stability.
As seen in
The shock-absorbing semi-tubular elements 30 and/or 130 are hollow, and when under load or impact, the semi-tubular elements 30 and/or 130 deform with the side walls and apex 38 of their āUā shape buckling and extending into the hollow open space in the center of the semi-tubular elements 30 and/or 130. The semi-tubular elements 30 and/or 130 thereby provide a substantial amount of shock absorption and resilience in the shoe sole while having a light weight due to the generally hollow nature of the semi-tubular elements 30 and/or 130.
In some embodiments, the lower part of the midsole is shaped to conform to the trough-shaped cavities 44. In such embodiments, the bottom surface 46 of the midsole 40 comprises a plurality of protrusions 48. The plurality of protrusions 48 correspond to the plurality of semi-tubular elements 30 and the trough-shaped cavities 44 such that the bottom surface 46 of the midsole 40 generally resembles the shape of the bottom layer of the footbed 20. In some embodiments, the bottom surface 46 of the midsole 40 is differently shaped depending on the shoe's purpose. For example, the bottom surface 46 of the midsole 40 of a casual or business shoe may be generally flat shaped to retain an appropriate look while still providing improved cushioning and energy return to the user.
In preferred embodiments, the outsole 50 comprises at least one ground contacting surface, as shown in
The outsole 50 couples to the bottom surface 46 of the midsole 40 by any conventional fashion known to those skilled in the art, preferably the outsole 50 is molded and/or adhered to the bottom surface 46. In preferred embodiments, the outsole 50 comprises a plurality of outsole segments embedded in the plurality of protrusions 48 of the midsole 40. In some embodiments, the outsole 50 is generally flat shaped to match a generally flat shaped bottom surface 46 of midsole 40.
Those skilled in the art will appreciate variations of the above-described embodiments that fall within the scope of the invention. Thus, the invention is not limited to the specific examples and illustrations discussed above, but only by the following claims and their equivalents.