The present invention relates to improvements concerning shoe soles and, in particular to a shoe sole with at least one pivotal ground or surface engaging plate located therein.
While a variety of shoe soles are known in the art, many of the current designs do not facilitate maintaining the foot in a properly oriented position during use of footwear or a shoe sole while the undersurface of the shoe sole is adapted to accommodate variations in the terrain upon which the footwear or shoe sole is being used. In addition, none of the footwear or shoe soles hereto known allows the internal structure of the shoe sole to be readily changed and/or programmed to suit a particular type of activity that the shoe sole will commonly experience.
Wherefore, it is an object of the present invention to overcome the above mentioned shortcomings and drawbacks associated with the prior art.
Another object of the present invention is to provide a rigid foot support plate for supporting substantially the entire foot of the user and stabilizing the foot of a user during use of the shoe sole while pivotally attaching at least one other plate to a bottom surface of the foot support plate and allowing the bottom plate to pivot relative to the foot support plate and compensate for variations in the terrain, during use of the shoe sole, while still maintaining the foot in a relatively stable position.
A further object of the present invention is to minimize movement of the foot relative to the foot support plate, during use of the shoe sole, so that the foot remains in a substantially stable position at all times whereby the shoe sole correctly supports the heel, the arch and the ball of the feet of a user during use of the shoe sole.
Yet another object of the present invention is to provide one or more programming features or components, located between the top foot support plate and the bottom ground engaging plate, which facilitate altering the pivoting characteristics of the shoe sole so that the shoe sole is specifically adapted to respond, in a desired manner, or compensate for a desired motion during use of the shoe sole.
A still further object of the present invention is to provide a pivot, located between the foot support plate and the ground engaging plate, at a substantially fixed location which facilitates pivoting movement of the ground engaging plate relative to the foot engaging plate in at least one direction of movement, preferably two or more different directions of movement.
Still another object of the present invention is to eliminate substantially any to and fro sheering action of the bottom ground engaging plate relative to the top foot engaging plate as well substantially eliminate any Z-axis rotational movement of the ground engaging plate relative to the foot engaging plate while only substantially permitting pivoting movement of the ground engaging plate(s) relative to the foot engaging plate.
The present invention also relates to a shoe sole comprising: a rigid foot engaging plate for accommodating a foot of a user, during use of the shoe sole, so that the foot remains supported by the foot engaging plate during use of the shoe sole; at least one ground engaging plate supported by an undersurface of the foot engaging plate; and a pivot member being located between the foot engaging plate and the ground engaging plate to facilitate relative pivoting motion between the foot engaging plate and the ground engaging plate during use of the shoe sole The present invention also relates to a shoe sole comprising: a foot engaging plate for accommodating a foot of a user, the foot engaging plate being sufficiently rigid so as to resist distortion of the foot engaging plate, during use of the shoe sole, so that the foot remains supported by the foot engaging plate during use of the shoe sole; separate toe and heel ground engaging plates supported by an undersurface of the foot engaging plate in a spaced relationship from one another, the toe ground engaging plate having a pivot member located between the foot engaging plate and the toe ground engaging plate to facilitate relative pivoting motion between the toe ground engaging plate and the foot engaging plate, the heel ground engaging plate having a pivot member located between the foot engaging plate and the heel ground engaging plate to facilitate relative pivoting motion between the heel ground engaging plate and the foot engaging plate; and a layer of resilient material being sandwiched between the foot engaging plate and the toe ground engaging plate and a layer of resilient material being sandwiched between the foot engaging plate and the heel ground engaging plate.
The invention will now be described, by way of example, with reference to the accompanying drawings in which:
With reference now to
A pair of toe and heel ground engaging plates 10, 12 are each pivotally attached to an undersurface 14 of the foot engaging plate 2 with the toe ground engaging plate 10 being located under the leading toe portion 16 of the foot engaging plate 2 while the heel ground engaging plate 12 being located under the trailing heel portion 18 of the foot engaging plate 2. Each one of the ground engaging plates 10, 12 typically sandwiches a layer of resilient material 20 between the upwardly facing surface 22 of the ground engaging plates 10, 12 and the lower downwardly facing undersurface 14 of the foot engaging plate 2. The layer of resilient material 20 typically has a thickness of between 0.1 and 0.5 inches or so. The layer of resilient material 20 can have a variety of different cushioning and other programming characteristics which determine the amount of pressure or force that is required to in order permit the either the toe or heel ground engaging plate 10, 12 to pivot or bias toward the foot engaging plate 2 about the fixed pivot 28 or 30. A further discussion concerning the permitted pivoting motion of the toe and/or heel ground engaging plates 10, 12, relative to the foot engaging plate 2, will be provided below.
As can be seen in
While the layer of resilient material 20 is shown in as being a single layer, it is to be appreciated that the layer of resilient material 20 could comprise two or a plurality of different layers of different materials which overlie one another. The bores 24 may, if desired, extend though one, some or all of the layers of resilient material 20, depending upon the particular application for the shoe sole 6.
A selectable compressible member 26 is typically accommodated within each one of the bores and, depending upon the specific hardness, durometer, softness and/or other characteristics of the selectable compressible member 26, the pivoting characteristics of either the toe and/or the heel ground engaging plates 10, 12, relative to the foot engaging plate 2, can be programmed to respond in a desired manner during use of the shoe sole when utilized for a particular activity, e.g., tennis, rock climbing, running, walking, etc. Accordingly, by properly choosing the resilient material(s) 20, the number, size and location of the bores 24 and the selectable compressible member 26 to be accommodated within each one of the bores 24 in the resilient material 20, it is possible to design the shoe sole to maximize the performance of the shoe sole 6 by a particular user for virtually any activity. Suitable materials for use in manufacturing the selectable compressible 26 member comprise, for example, rubber, foam, synthetic materials and other conventional footwear materials.
As shown in
It is to be appreciated that while the selectable compressible members 26, 26′, 26″, according to this embodiment, are shown as being substantially spherical in shape, the selectable compressible members 26, 26′, 26″ could have a variety of other different shapes, sizes, configuration, e.g., they could, for example, be either cylindrical, tubular, rectangular, square, hexagonal, etc. In addition, the selectable compressible members 26, 26′, 26″ could be either solid, hollow or partially hollow. The actual shape, size and/or configuration of the selectable compressible members 26, 26′, 26″ is not critical. What is important, however, is the specific characteristics and/or properties of the selectable compressible members 26, 26′, 26″ along with the specific characteristics and/or properties of the layer of resilient material 20 since these characteristics and/or properties will, along with the characteristics of the fixed pivot 28 or 30, dictate the pivoting characteristics of the shoe sole 6 during use.
In order to facilitate pivoting motion of the ground engaging plates 10, 12 relative to the foot engaging plate 2, an incompressible substantially fixed pivot member 28, 30 is provided between the respective foot and ground engaging plates 10, 12. As can be seen in
It is to be appreciated that the pivoting motion, as shown in
Although the incompressible pivot members 28, 30 are shown, in
In the embodiment shown in
As is conventional in the shoe industry, the lower bottom most surfaces 34, 36 of the respective toe and heel ground engaging plates 10, 12 each have or are provided with a desired gripping material or durable layer 38, 40 which is suitable for the particular application of the shoe sole 6. As is shown in
With reference now to
It is to be appreciated that this embodiment is more specifically directed to a golf shoe. Like the previously discussed embodiment, the shoe sole 6 has a foot engaging plate 2 which is located to accommodate and support the foot of a user during use. In addition, the shoe sole 6 is provided with a toe ground engaging plate 10 and a heel ground engaging plate 12 which, like the previous embodiment, each have a respective substantially fixed pivot 52, 54, which are both generally centrally located to facilitate the desired pivoting motion of the respective toe and heel ground engaging plates 10, 12 with respect to the foot engaging plate 2. In addition, one or more layers of resilient material 20 is/are accommodated between the respective toe and heel ground engaging plates 10, 12 and the foot engaging plate 2. As with the previous embodiment, one or more holes or openings 24 may be formed in the resilient material 20, depending upon the particular application, so as to program the golf shoe to perform a particular function or motion, resist a particular function or motion, encourage a particular function or motion, etc.
According to this embodiment, the incompressible pivot members 52, 54 are formed integral with the remainder of the respective toe and heel ground engaging plates 10 and 12 by forming a substantially cylindrical indentation or dome 56 or 58 in the central region thereof. The upwardly facing surface 60, 62 of the incompressible indentation or dome 56, 58 is located to engage with the undersurface 14 of the foot engaging plate 2 and provide the desired pivoting motion upon suitable compression of the layer of resilient material 20, located between the foot engaging plate 2 and the toe and the heel ground engaging plates 10 and 12, during walking, swinging, etc., as a golfer uses footwear incorporating the shoe sole 6.
As with the previous embodiment, depending upon the design specific characteristics of the shoe sole, e.g., the hardness, the softness, the durometer, etc., of the layer of resilient material 20 can be selected to suit the particular need(s) of a particular user. In addition, the thickness of the layer of the resilient material 20 and/or the layers comprising the layer of resilient material 20 can be suitably selected to achieve a desired performance characteristics.
As is conventional in the prior art, a plurality of soft spikes 64, 66 are supported by the 14 of the ground engaging plates 10, 12. As can be seen in
In addition, each one of the soft spikes 64, 66 is provided with a plurality, e.g., three or four equally spaced locking lugs 70 which facilitate releasable locking engagement of the soft spikes 64, 66 with a respective spike cavity 72 provided in either the toe or the heel ground engaging plate 10, 12. That is, the rounded leading end of the soft spikes 64 or 66 is received within the respective spike cavity 72 such the that the locking lugs 70 pass through corresponding receiving slots 73 formed about the perimeter of the spike cavity 72. Once this occurs, the soft spike 64 or 66 is then rotated a desired rotational angle 30° to 120° by use of a conventional soft spike attachment tool. Following rotation of the soft spike 64 or 66 by the attachment tool, the soft spike 64 or 66 is locked relative to the toe or the heel ground engaging plate 10, 12 so that the soft spikes 64, 66 are substantially permanently retained therein until they are subsequently removed by an end user via the attachment tool or happen to fall out after a prolonged period of use.
A major difference between the soft spikes 64, 66, according to the present invention, and the soft spikes known in the prior art, is that a domed or contoured surface 78 is formed on the soft spike 64, 66, remote from the gripping tread, pattern or arrangement 76 to provide a domed pivoting surface 78 which allows the soft spike 64, 66 to pivot relative to either the toe or the heel ground engaging plates 10, 12 during use of the shoe sole. The pivoting motion of the soft spike 64, 66 helps ensure that each one of the soft spikes 64, 66, during use, is able to individually pivot relative to the grass, the ground, the sand, the cart path and/or turf so that the entire gripping tread, pattern or arrangement 76 of the soft spike 64, 66 remains in constant and continuous contact and engagement with the grass, the ground, the sand, the cart path and/or turf to provide a maximum gripping force and effect. In addition, by having a plurality of soft spikes 64, 66 which are all pivotally attached to the shoe sole 6, the soft spikes 64, 66 are readily able to adapt to variations in the terrain in order to help maintain the foot properly positioned and oriented on the top surface 8 of the foot engaging plate 2 and minimize any distortion force(s) which may be transferred or transmitted through the shoe sole 6 to the foot.
It is to be appreciated that the locking lugs 70 and gripping tread, pattern or arrangement 76 must allow for pivoting motion of the soft spikes 64, 66 relative to the foot engaging plate 2 while still captively engaging the soft spike 64, 66 within the spike cavity 72. Preferably the dome surface 78 of the soft spike 64, 66 is manufactured from a conventional substantially incompressible material, to ensure that the soft spike 64, 66 pivots, rather than is partially compressed, as the soft spike 64, 66 engages with the grass, the ground, the sand, the cart path and/or turf during use of the shoe sole 6.
With reference now to
As with the previous embodiments, the foot engaging plate 2 is generally sized to accommodate the user's foot and is provided with a substantially continuous contoured perimeter shroud or annular skirt 4 which helps maintain, support and retain the foot properly located and centered on the foot engaging plate 2 during use of the shoe sole 6. Preferably the foot engaging plate 2 is manufactured from a substantially rigid material which is designed to resist distortion and/or deflection of the foot engaging plate 2, during use thereof, so that the foot of the user is always properly and adequately supported by the foot engaging plate 2 during use of the shoe sole 6. If desired, the upwardly facing top surface 8 of the foot engaging plate 2 can be provided with a thin padding material, a liner, an odor absorbing layer or some other conventional and well known top layer to provide desired comfort to a foot of a user during use of the shoe sole 6.
According to this embodiment, the location of the incompressible pivot member 29 is reversed to the first embodiment. That is, the single incompressible pivot member 29 is securely fastened and supported by the lower downwardly facing surface 14 of the foot engaging plate 2 for direct engagement with the ground or some other surface. Since only a single incompressible pivot member 29 is utilized, it is generally located or positioned in a central region of the foot engaging plate 2, generally between the toe and heel regions.
A layer of resilient material 20 is supported by the lower downwardly facing surface 14 of the foot engaging plate 2 for interacting with the ground or some other surface along with the single incompressible pivot member 29. The layer of resilient material 20 has a generally centrally located hole or opening 31 formed therein for surrounding and accommodating the single incompressible pivot member 29. If desired, the lower bottom most ground engaging surface of the layer of resilient material 20 may carry a desired gripping material or durable layer 39 which is suitable for the particular application of the shoe sole 6. As is shown in
The layer of resilient material 20 typically has a thickness of between 0.1 and 0.5 inches or so. The layer of resilient material 20 can have a variety of different cushioning and other programming characteristics which determine the amount of pressure or force that is required to in order permit pivoting about the single pivot formed by the single incompressible pivot member 29. In addition, the layer of resilient material 20 may actually comprise two or more separate and distinct layers of which each have a desired cushioning and other programming characteristic(s) to optimize the amount of pressure or force that is required to in order permit pivoting about single incompressible pivot member 29.
As shown in
As can be seen in
With reference now to
With reference now to
As with the previous embodiments, the foot engaging plate 2 is generally sized to accommodate the user's foot and is provided with a substantially continuous contoured perimeter shroud or annular skirt which helps maintain, support and retain the foot properly located and centered on the foot engaging plate 2 during use of the shoe sole 6. According to this embodiment, the location of the incompressible pivot members 28, 30 are reversed to the first embodiment. That is, both of the incompressible pivot members 28 and 30 are securely fastened and supported by the lower downwardly facing surface of the foot engaging plate 2 for direct engagement with a desired surface, such as the ground. That is, a toe incompressible pivot member 28 and a separate heel incompressible pivot member 30 are utilized and the toe incompressible pivot member 28 is generally centrally located in the toe region of the foot engaging plate 2 and the heel incompressible pivot member 30 is generally centrally located in the heel region of the foot engaging plate 2.
A layer of resilient material 20 is supported by the lower downwardly facing surface of the foot engaging plate 2 for interacting with the ground or some other surface. The layer of resilient material 20 has at least two holes or openings 31′, 31″ formed therein for surrounding and accommodating each one of the incompressible pivot members 28 and 30. If desired, the lower bottom most engaging surface of the layer of resilient material 20 may carry a desired gripping material or durable layer (not shown) which is suitable for the particular application of the shoe sole 6, such as leather, rubber, or some other synthetic or conventional material which is commonly used in the shoe industry, to provide a desired gripping effect of the lower most surface of the resilient material 20 with the ground or some other surface during use of the shoe sole 6.
The layer of resilient material 20 typically has a thickness of between 0.1 and 0.5 inches or so. The layer of resilient material 20 can have a variety of different cushioning and other programming characteristics which determine the amount of pressure or force that is required to in order permit pivoting about both of the fixed pivots 28 or 30. In addition, the layer of resilient material 20 may actually comprise two or more separate and distinct layers of which each have a desired cushioning and other programming characteristic to optimize the amount of pressure or force that is required to in order permit pivoting about one or both of the fixed pivots 28 or 30.
As shown in
With reference now to
With reference now to
With reference now to
As with the previous embodiments, the foot engaging plate 2 is generally sized and contoured to accommodate the user's foot and is provided with a continuous support for the foot for retaining the foot properly positioned and supported on the foot engaging plate 2 during use of the shoe sole 6′. According to this embodiment, the incompressible pivot members 28 and 30 are securely fastened and supported by the lower downwardly facing surface of the foot engaging plate 2 for direct engagement with a desired surface, such as the ground. That is, a toe incompressible pivot member 28 and a separate heel incompressible pivot member 30 are utilized and the toe incompressible pivot member 28 is generally centrally located in the toe region of the foot engaging plate 2 and the heel incompressible pivot member 30 is centrally located at the base of the elongated tapering heel section 74 which is directly supported by the foot engaging plate 2.
One layer of resilient material 20′ is supported by the lower downwardly facing surface of the foot engaging plate 2 for interacting with the ground or some other surface while a second layer of resilient material 20″ is supported by the lower downwardly facing surface of the base of the elongated tapering heel section 74. Each layer of resilient material 20′, 20″ has at least one hole or opening formed therein for surrounding and accommodating the associated incompressible pivot member 28 or 30. If desired, the lower bottom most ground engaging surface of the layer of resilient material 20′, 20″ may carry a desired gripping material or durable layer 38, 40 which is suitable for the particular application of the shoe sole 6′. As is shown in
As with the previous embodiments, the layers of resilient material 20′, 20″ can have a variety of different cushioning and other programming characteristics which determine the amount of pressure or force that is required to in order permit pivoting about both of the fixed pivots 28 or 30. In addition, the layers of resilient material 20′, 20″ may actually comprise two or more separate and distinct layers of which each have a desired cushioning and other programming characteristic to optimize the amount of pressure or force that is required to in order permit pivoting about one or both of the fixed pivots 28 or 30.
As with the previous embodiments, the incompressible pivot members 28 and 30 may extend either less, a further distance or substantially the same distance from the lower downwardly facing surface of the foot engaging plate 2 as the resilient material 20′, 20″, depending upon the particular application, so that the incompressible pivot members 28 and 30 are extend a smaller distance, a further distance or are both substantially coplanar with the lower most conventional durable layers 38, 40 supported by the resilient material 20′, 20″.
With reference now to
With reference now to
While the incompressible pivot is generally shown as being substantially arcuate or spherical in shape, it is to be appreciated that the incompressible pivot may be elongated in one direction to minimize and/or eliminate pivoting in a direction lying normal to the elongate length of the pivot.
The term “shoe sole”, as used within this patent application, is to be construed broadly and encompass a variety of different kinds of footwear such as, shoes, sneakers, running shoes, training shoes, golf shoes, tennis shoes, dress shoes, high heels, boots, ski boots, snow board boots, etc.
In all of the above discussed embodiments, although the incompressible pivot members 28, 29, 30 may only be shown in one arrangement, it is to be appreciated that the location of the incompressible pivot members 28, 29, 30 could be reversed. That is, the incompressible pivot members 28, 29, 30 could be supported by the opposed surface without departing form the spirit and scope of the present invention.
Since certain changes may be made in the above described shoe sole, without departing from the spirit and scope of the invention herein involved, it is intended that all of the subject matter of the above description or shown in the accompanying drawings shall be interpreted merely as examples illustrating the inventive concept herein and shall not be construed as limiting the invention.
This application is a divisional of U.S. patent application Ser. No. 11/914,987 filed Nov. 20, 2007, now U.S. Pat. No. 8,141,272 granted Mar. 27, 2012, which is a National Stage completion of PCT/US2006/019366 filed May 19, 2006, which claims the benefit of U.S. provisional application No. 60/683,225 filed May 20, 2005.
Number | Name | Date | Kind |
---|---|---|---|
4364188 | Turner et al. | Dec 1982 | A |
4887367 | Mackness et al. | Dec 1989 | A |
4972611 | Swartz et al. | Nov 1990 | A |
5195257 | Holcomb et al. | Mar 1993 | A |
D334463 | Chang | Apr 1993 | S |
5493791 | Kramer | Feb 1996 | A |
5853844 | Wen | Dec 1998 | A |
5881478 | McMahon et al. | Mar 1999 | A |
6880267 | Smaldone et al. | Apr 2005 | B2 |
7213354 | Byrd et al. | May 2007 | B1 |
20040068892 | Wang | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
2 203 025 | Oct 1988 | GB |
Number | Date | Country | |
---|---|---|---|
20120240433 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
60683225 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11914987 | US | |
Child | 13428550 | US |