The present invention relates to a shoe, and in particular, to a shoe which is used for a swash plate type compressor, for example, and slides with a swash plate.
Heretofore, one equipped with a swash plate provided rotatably, and a shoe which has a sliding surface which slides with this swash plate is known as a swash plate type compressor (for example, Japanese Patent Laid-Open No. 10-153169 (Patent Document 1), Japanese Patent Laid-Open No. 2002-317757 (Patent Document 2)).
By the way, recently, conventional swash plate type compressors mentioned above are used under conditions of a heavy load at high speed and a small lubricating oil amount. In this way, recently, operating conditions of a swash plate type compressor have been still severer, and hence, there arise issues that wear of a swash plate or a shoe becomes extreme, and moreover, seizure of them is easy to arise.
Furthermore, in order to enhance a sliding characteristic of a shoe, up to now, processing of applying surface finishing to a sliding surface of the shoe, or performing reforming is performed, which causes a defect that manufacturing cost of the shoe becomes expensive, by performing such processing.
In consideration of situations mentioned above, in a shoe equipped with a sliding surface sliding with a swash plate, the present invention not only forms a hardening portion which includes a lot of minute swelling portions on the above-mentioned sliding surface, but also forms the above-mentioned swelling portions so that a convex portion area rate which is a value of S2/S1 may become 0.3 to 0.8 with letting an area of a hardening object domain in which the above-mentioned swelling portions are formed be S1 and letting an area of a total of all the swelling portions be S2.
According to such construction, apparently also from test results mentioned later, it is possible to provide a shoe which is good in seize resistance in comparison with the past.
When the present invention is described about an illustrated embodiments below, in
The swash plate 3 is formed in a disc, and both end faces of this swash plate 3 are flat sliding surfaces 3A and 3A which slide with the shoes 4.
On the other hand, a shoe 4 is formed hemispherically as a whole, and is constructed of a sliding surface 4A which slides with the sliding surface 3A of the above-mentioned swash plate 3, and a hemispherical convex 4B which is hemispherical.
In the housing of the above-mentioned swash plate type compressor, a plurality of pistons 5 are arranged in parallel to the rotary shaft 2 with surrounding it. A pair of shoes 4 is slidably held in a circular cutout portion 5A formed in one end of each piston 5, and the sliding surface 3A of the swash plate 3 is made to abut on the sliding surfaces 4A of each pair of shoes 4 while the cutout portion 5A in the state is arranged so as to wrap an outer periphery of the above-mentioned swash plate 3.
Then, rotation of the above-mentioned rotary shaft 2 rotates the swash plate 3, the sliding surfaces 3A which are both end surfaces of the swash plate 3 slide with the sliding surfaces 4A of the each pair of shoes 4, and in connection with it, each piston 5 is advanced and retreated in an axial direction through each pair of shoes 4.
The construction mentioned above has no difference from a conventional publicly known sliding apparatus.
Hence, the shoe 4 of this embodiment is made from SUJ2 which is an iron-based material, and the generally flat sliding surface 4A which is constructed of end faces has a convex shape where its center side rises up slightly (about 2 μm) than an outer periphery edge. Thereby, it has a shape that lubricating oil is easy to be drawn between both the sliding surfaces 4A and 3A when the sliding surface 4A slides with the sliding contact surface 3A of the above-mentioned swash plate 3.
Then, in this embodiment, seize resistance of the sliding surface 4A is enhanced by radiating a laser and performing hardening as mentioned later with making an entire area of the sliding surface 4A of the shoe 4 as a hardening object domain.
That is, when processing steps of hardening to the sliding surface 4A in this embodiment are described, first, as shown in
In addition, an output of the YAG laser which is radiated on the above-mentioned sliding surface 4A is 50 W, and the YAG laser is made to irradiate a surface of the sliding surface 4A, with adjusting a condenser lens so that the YAG laser may be focused at a position which becomes a depth of 2 mm, that is, in a defocused state to the surface of the sliding surface 4A.
A location of each circle 6 in the sliding surface 4A on which the laser is radiated in this way is swelled annularly as illustrated in
The each annular swelling portion 7 and location 11 (location in a side upper than a broken line 9) inside its depth direction are given the hardening processing with increasing hardness by about Hv 100 to Hv 750 which is hardness of the parent material of the shoe 4. On the other hand, locations (locations of the concavity 8 and net-like concavity 10) inside a radial direction of the each annular swelling portion 7 and outside the annular swelling portion 7 in the sliding surface 4A become non-hardening portions by annealing, and those portions are lowered by about Hv 100 in hardness than the parent material.
In this embodiment, first of all, a lot of minute annular swelling portions 7 and concavities 8, and net-like concavities 10 are formed by radiating the laser as mentioned above with the entire area of the sliding surface 4A of the shoe 4 as the hardening object domain.
Then, all the annular swelling portions 7 in the above-mentioned sliding surface 4A are once removed by lapping after that for the sliding surface 4A to be made into a smooth surface, and after that, buffing is applied to the sliding surface 4A for the processing to be completed.
In this way, after the processing is completed, as shown in
This is because the above-mentioned annular swelling portions 7′, concavities 8′, and lubricating oil passages 10′ are formed because portions with high hardness remain annularly since hardness of the locations 11 inside the depth direction of the annular swelling portions 7 is higher than hardness of their peripheral portions by the original annular swelling portions 7 being removed by lapping and buffing being applied after that.
In this embodiment, a hardening portion is formed of the lot of annular swelling portions 7′ formed in this way. In addition, the each concavity 8′ functions as a reservoir which stores lubricating oil, and lubricating oil can circulate the interior of the lubricating oil passage 10′.
In this embodiment, although it is made to apply buffing after applying laser hardening to the sliding surface 4A and applying lapping, as mentioned above, since a grinding amount of the sliding surface 4A in an axial direction by the lapping and buffing is about several μm, an area of the sliding surface 4A does not change substantially.
In addition, as shown in
Then, in this embodiment, with letting an area of an entire area of the sliding surface 4A used as the hardening object domain at the time of radiating a laser be S1, and letting a total area of all the annular swelling portions 7′ which are formed on the sliding surface 4A be S2, the above-mentioned annular swelling portion 7′ is formed so that a value of S2/S1 as the convex portion area rate may become 0.3 to 0.8. In other words, in this embodiment, a ratio of the total area of the portions (annular swelling portions 7′) to which laser hardening is actually applied to the area (area of the sliding contact surface 4A) of the hardening object domain is made to become 0.3 to 0.8.
In addition, in the above-mentioned embodiment, although the entire area of the sliding surface 4A is made into the hardening object domain, as illustrated in
In this embodiment which is illustrated in
Then, apparently from test results mentioned later, according to this embodiment, seize resistance of the shoe 4 can be enhanced. In addition, according to results of a test which the inventor of the present application performed, in order to obtain better seize resistance of the shoe 4, it is desirable to form the annular swelling portions 7′ so that the above-mentioned convex portion area rate may become 0.45 to 0.8.
Then,
Here, the shoe of the conventional art is not given laser hardening to its sliding surface, and its sliding surface is a flat surface. In addition, what are made from brass materials which contain Mn and Si were used as swash plates as mating materials with the shoes according to the conventional art and this embodiment. The test conditions of the seize resistance are as follows.
Rotation speed of swash plate: Increase by 9 steps per minute every 1000 rpm: maximum rotation speed: 9000 rpm (peripheral speed: 38 m/s)
Bearing stress: Preload: 2.7 MPa: increase by 2.7 MPa per minute: until arrival in seizure
Oil mist amount: 0.05 to 0.25 g/min: fixed nozzle position
Oil: Refrigerating machine oil
Seizure condition: More than 4.0 N-m of output torque
Thus, the rotation speed of the swash plate 3 is increased on the above-mentioned conditions in a state that the sliding surface 4A of the shoe 4 is made to press-contact with the above-mentioned swash plate 3. On the other hand, the bearing stress at the time of making the shoe 4 press-contact with the swash plate 3 was increased on the above-mentioned conditions, and when the output torque applied to the swash plate 3 exceeded 4.0 N·m, it was judged with having arrived in the seizure. This is the same also about the conventional art.
What are indicated by black dots in
On the other hand, what are indicated by white dots in
Apparently from test results illustrated in
In addition, on the sliding surface 4A of the shoe 4 of this embodiment, not only the lot of above-mentioned annular swelling portions 7′ are formed, but also the concavities 8′ which store lubricating oil are formed in its inner radial direction, and lubricating oil is stored inside these concavities 8′. Furthermore, in adjacent positions outside the each annular swelling portion 7′, lubricating oil passages 10′ constructed of net-like concavities are formed. Thereby, it is possible to enhance load capacity of the sliding surface 4A of the shoe 4, and by extension, it is possible to provide the shoe 4 which is excellent also in wear resistance.
In addition, in the embodiment mentioned above, with letting the entire area of the sliding surface 4A of the shoe 4 be the hardening object domain by a laser, although the annular swelling portions 7′ are formed there, the annular swelling portions 7′ may be formed there with letting a necessary area where pressure becomes high when sliding with the swash plate 3 be the hardening object domain by a laser.
That is, as shown in
As shown in these
In the each embodiment described above, although the each annular swelling portion 7′ is formed in an intersection point of parallel lines in longitudinal and horizontal directions, it is also sufficient to form the each annular swelling portion 7′ in a staggered manner in the sliding contact surface 4A as illustrated in
In addition, in the embodiment mentioned above, although all the diameters of the circles at the time of irradiating the sliding surface 4A with a laser are made as the equal diameter, it is also sufficient to form the annular swelling portion 7′ so that what is located in a specified position (center position in
Furthermore, it is also sufficient to form the annular swelling portion 7′ by irradiating the sliding surface 4A with a laser so that an ellipse may be drawn as shown in
Moreover, it is also sufficient to form the swelling portion 7′ by irradiating the sliding surface 4A with a laser so that circles may be drawn in equal pitch on a circumference of an imaginary circle as shown in
In addition, although SUJ2 is used as a raw material of the shoe 4 in the embodiments mentioned above, this is not limited to this, but of course, it is also sufficient to use other iron-based materials.
Furthermore, as in stead of the laser hardening by the laser radiation mentioned above, it is also sufficient to form the above-mentioned annular swelling portions or swelling portions by irradiating a sliding surface with an electron beam and performing hardening.
Number | Date | Country | Kind |
---|---|---|---|
2004-380507 | Dec 2004 | JP | national |
2005-130574 | Apr 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP05/23772 | 12/26/2005 | WO | 00 | 6/12/2007 |