1. Field of the Invention
The present invention relates to footwear, in particular, to a shoe with fitness benefits. The fitness benefits are experienced through a unique walking action in which the foot strike mimics the effect of walking on a sandy beach or on an uneven surface. This is accomplished through a multi-layer, multi-density midsole where the surfaces between midsole layers have one or more convexities and one or more concavities.
2. Description of the Related Art
Shoes are designed for many purposes—from protection on the job to performance on the track or court to special occasions and everyday lifestyle. Shoes have also been used to promote physical health and activity. Increasingly, shoes have given users fitness benefits. Many shoes have attempted to provide users the benefit of improving the user's fitness by simply walking while wearing such shoes. However, there continues to be a need for such shoes that improve the user's health yet are comfortable and easy to use.
Walking is one of the easiest and most beneficial forms of exercise. When done properly and with the appropriate footwear, it strengthens the heart, improves cardiovascular health, increases one's stamina and improves posture. It also helps to strengthen one's muscles and maintain joint flexibility.
Prior art shoes have attempted to improve the user's fitness by mimicking walking barefoot. These shoes have included a midsole made of hard material throughout the entire midsole except for a recess in the rear region of the shoe in which a softer, cushioning material is placed. See, for example, U.S. Pat. No. 6,341,432 to Muller. Such shoes include an abrupt, discrete pivot point on the bottom surface of the midsole in the middle region of the shoe where the cushioning material ends and the hard material of the midsole begins. Consequently, in every step taken during normal walking while wearing such shoes, the user is forced to overcome this abrupt, discrete pivot point. This can result in significant pain and discomfort. See also, for example, U.S. Pat. No. 6,782,639 to Müller.
The present invention aims to provide a way of mimicking walking on a sandy beach or on a giving or uneven surface, while not inducing any significant pain or discomfort from doing so. By mimicking walking on a sandy beach and/or on an uneven surface, the present invention aims to significantly increase the fitness and health benefits of everyday walking by requiring the user to exert additional effort and energy while walking and to use muscles that the user otherwise would not use if wearing ordinary footwear, again all without inducing any substantial pain or discomfort.
It is an object of the present invention to provide a shoe that mimics the effects, and imparts the fitness benefits of, walking on a sandy beach or on a giving or uneven surface without inducing any significant pain or discomfort from doing so. The present invention is a shoe comprising an upper, an outsole, and a midsole, each having a medial side and a lateral side. In a preferred embodiment, the midsole is affixed to the upper and the outsole is affixed to midsole. The upper, midsole, and outsole each has a frontmost point and a rearmost point substantially opposite the frontmost point. When the shoe is being worn by a user, each frontmost point and each rearmost point is oriented with respect to one another such that each frontmost point is closer to the user's toes than each rearmost point while at the same time each rearmost point is closer to the user's heel than each frontmost point.
The shoe has a front portion and a rear portion substantially opposite the front portion. When the shoe is being worn by a user, the front portion and the rear portion are oriented with respect to one another such that the front portion is closer to the user's toes than the rear portion while at the same time the rear portion is closer to the user's heel than the front portion.
The shoe has a front tip that is located at the farthest forward point of the shoe when moving from the rear portion to the front portion. The shoe has a rear tip that is located at the farthest rearward point of the shoe when moving from the front portion to the rear portion. In a preferred embodiment, the front tip coincides with the frontmost point of the upper, the frontmost point of the midsole, or the frontmost point of the outsole while the rear tip coincides with the rearmost point of the upper, the rearmost point of the midsole, or the rearmost point of the outsole. In a preferred embodiment the frontmost point of the upper, the frontmost point of the midsole, and the frontmost point of the outsole are all located relatively close to one another while the rearmost point of the upper, the rearmost point of the midsole, and the rearmost point of the outsole are all located relatively close to one another.
The upper, midsole, and outsole each has a toe region. The toe region includes the region that extends substantially from the medial side to the lateral side at a location that begins in the vicinity of the front tip of the shoe and extends from there to a location that is approximately one third of the distance toward the rear tip of the shoe.
The upper, midsole, and outsole each has a heel region. The heel region includes the region that extends substantially from the medial side to the lateral side at a location that begins in the vicinity of the rear tip of the shoe and extends from there to a location that is approximately one third of the distance toward the front tip of the shoe.
The upper, midsole, and outsole each has a middle region. The middle region includes the region that extends substantially from the medial side to the lateral side at a location that extends approximately between the toe region and the heel region.
The midsole further comprises an upper layer and a lower layer, the upper layer having a first density and the lower layer having a second density different from the first density, and the upper layer having a top surface and a bottom surface substantially opposite the top surface wherein the bottom surface has two or more convexities, or two or more concavities, or a single convexity and a single concavity.
In a preferred embodiment, the invention includes an outsole that, when no load is applied, curves continuously upward in a direction toward the upper beginning at a location near the middle region of the outsole and ending at a location near the rearmost point of the upper. In this preferred embodiment, the midsole has two layers, an upper layer and a lower layer, and the upper layer and the lower layer each extend from at least the vicinity of the front tip of the shoe to at least the vicinity of the rear tip of the shoe. The upper layer is made from a material having a first density sufficiently dense to support and stabilize the foot. Typically, the upper layer has a density between about 0.400 and about 0.500 grams per cubic centimeter and a durometer between about 50 and about 75 on Shore A (ASTM D2240). The upper layer typically has a relatively low compressibility so that it compresses a relatively low, or small, amount under a given load. The lower layer, which may or may not be made of the same material as the upper layer, has a second density that is different from the first density and is sufficiently low in density and high in compressibility so as to allow the lower layer to compress and deform a higher, or greater, amount under a given weight than the upper layer would compress and deform under that same weight. Typically, the lower layer has a density between about 0.325 and about 0.419 grams per cubic centimeter and a durometer between about 15 and about 38 on Shore A (ASTM D2240). The density of the lower layer is sufficiently low and the compressibility of the lower layer is sufficiently high so that under normal walking conditions the user's foot, first in the heel region, then in the middle region, and then finally in the toe region, sinks toward the ground as the lower layer compresses and deforms due to the lower layer's relatively low density and/or high compressibility.
Thus, during walking while wearing a preferred embodiment of the instant invention, when the curved heel region of the outsole strikes the ground, the heel region of the lower layer, which is less dense and more easily compressed than the upper layer, deforms to a relatively large degree compared to the upper layer. After each such initial heel region contact with the ground, the user's heel continues to sink or move toward the ground more than it would sink or move in a conventional shoe. This sinking or downward movement is due primarily to deflection of the heel region of the outsole and compression of the heel region of the midsole as they each respond to the increasing weight being transmitted through the user's heel as the step progresses and the user's heel continues to bear an increasing amount of the user's weight until it reaches a maximum. The impact is akin to a heel striking a sandy beach or a giving or uneven surface. Then, as the user's weight begins to shift toward the middle region of the shoe, the shoe rolls forward in a smooth motion, without the user having to overcome any abrupt or discrete pivot points. Then the lower layer of the midsole in the middle region and then in the toe region compresses and deforms under the increasing weight of the user's foot in those regions as the step progresses. This compression and deformation allows the user's foot to sink further toward the ground than would be the case with a conventional shoe. The user then completes the step by pushing off with the forefoot ball area of the user's foot. This push-off further compresses and deforms the lower layer in the toe region.
The convexities and concavities in the instant invention are all identified as being on, and being a part of, the bottom surface of the upper layer. Under this convention, each convexity identified herein is, to some degree, an outward bulge of the bottom surface of the upper layer and each concavity identified herein is, to some degree, an inward depression in the bottom surface of the upper layer. Each convexity's outward bulge means that the upper layer is relatively thick wherever it has a convexity. This increased thickness of the upper layer corresponds to a decrease in thickness of the lower layer at each location where the lower layer is opposite a convexity. Similarly, each concavity's inward depression means that the upper layer is relatively thin wherever it has a concavity. This increased thinness of the upper layer corresponds to a decreased thinness, i.e., a thickening, of the lower layer at each location where the lower layer is opposite a concavity.
Each convexity and concavity has at least five primary variables that control the effect of each convexity and each concavity. These primary variables are (1) the location where each convexity and concavity is located on the bottom surface of the upper layer, (2) the sharpness or shallowness of the convexity or concavity, i.e., its radius or radii of curvature, (3) the length or wavelength of each convexity or concavity as measured from a point where it begins to a point where it ends, (4) the amplitude, i.e., the greatest height of each convexity or the greatest depth of each concavity, and (5) the firmness or compressibility of the upper layer material with which each convexity or concavity is formed. These variables are some of the primary means by which the effects of the shoe on the user are controlled. These effects comprise primarily the degree of softness or hardness felt by the foot throughout each step while wearing the shoe, the amount of energy and effort needed for the user to complete each step, and the amount of muscle use, control and coordination necessary for the user to maintain the user's balance throughout each step.
The degree of softness or hardness felt by the foot immediately after the heel strike is controlled primarily by a concavity located in the heel region. This concavity is typically relatively large overall, i.e., it typically has a long length, a large radius or radii of curvature, and a large amplitude. This relatively large concavity allows a relatively thick lower layer to be used in the heel region that can absorb and soften the initial heel strike of each step. Such a concavity could also be located in the middle region or the toe region of the upper layer. Whereas each concavity imparts a relatively soft feel to the user's foot while walking, each convexity imparts a relatively hard feel to the user's foot while walking. This relative hardness is due to the decreased thickness of the soft, highly compressible lower layer at each location where a convexity occurs.
The amount of energy and effort required by the user in each step is related to the degree of softness or hardness felt by the user as discussed in the preceding paragraph insofar as each concavity corresponds to a softer feel which, in turn, requires more energy and effort to overcome in each step.
The amount of muscle use, control and coordination necessary for the user to maintain the user's balance throughout each step increases in direct proportion to each one of the following: (1) increased concavity size, and (2) increased compressibility of the lower layer. Increased concavity size, primarily in the form of length and amplitude, corresponds to a thicker lower layer. The compressibility of the lower layer is a physical property inherent in the material out of which the lower layer is made. It is a measure of the readiness with which the lower layer compresses under a given load. A high compressibility means that the lower layer is highly compressible and can be compressed a high amount with relative ease. As the compressibility increases, the user must use more muscle control and coordination to maintain the user's balance during each step as the weight of the user compresses the lower layer. This compression is accompanied by a downward movement of the user's foot as it compresses the lower layer during each step. This downward compression movement requires balancing by the user to accommodate the inherent lateral and transverse instability that accompanies the compression. This inherent lateral and transverse instability is also affected by the thickness of the lower layer. This thickness, as mentioned above, increases as concavity size increases. As this thickness increases, the inherent lateral and transverse instability also increases. Thus, concavities contribute to a less stable walking nature of the shoe. The relative opposite effect is achieved with a convexity. Each convexity in the upper layer corresponds to a relative thinness in the lower layer. This relative thinness in the lower layer means that the user is not required to undergo as much balancing as when the lower layer is thick, primarily because the relatively unstable lower layer is relatively minimized where each convexity occurs in the corresponding upper layer. Thus, convexities contribute to a more stable walking nature of the shoe.
One of the primary objectives of shoes having midsoles as disclosed herein is to provide fitness benefits to the user by requiring the user, by merely walking, to exert more energy and effort than would otherwise be required when walking while wearing conventional shoes, and to require the user to use, control, and coordinate muscles in ways that such muscles would not be used, controlled or coordinated when walking while wearing conventional shoes. Just as walking on a sandy beach requires more energy and effort than walking on a hard, flat surface, the relatively thick, highly compressible lower layer of the midsole in the area of the concavities requires that a user wearing such shoes exert more energy and effort to walk than is required while wearing conventional shoes. The extra thickness and high compressibility of the lower layer in the area of the concavities further allows the shoes to flex more, both transversely and laterally, than conventional shoes. In order for the user to maintain the user's balance and a normal walking gait under such flexure conditions, the user is required to use muscles and to control and coordinate muscles to an extent greater than is required when walking while wearing conventional shoes. The use of such muscles in such a manner further imparts a fitness benefit to the user. These and other fitness benefits of the instant shoe include, among others: muscle strengthening and toning, better posture, improved cardiovascular health, less stress on joints, and improved circulation.
For a further understanding of the objects and advantages of the present invention, reference should be had to the following detailed description, taken in conjunction with the accompanying drawings, in which like parts are given like reference numbers and wherein:
The invention will now be described with reference to
The midsole 103, as shown in
The shoe has a front tip 140 located at the farthest point toward the front of the shoe and a rear tip 142 located at the farthest point toward the rear of the shoe. The upper layer 107 includes a toe region 151 that extends substantially from the medial side of the shoe to the lateral side of the shoe at a location that begins in the vicinity of the front tip 140 and extends from there to a location that is approximately one third of the distance toward the rear tip 142. The lower layer 109 includes a toe region 161 that extends substantially from the medial side of the shoe to the lateral side of the shoe at a location that begins in the vicinity of the front tip 140 and extends from there to a location that is approximately one third of the distance toward the rear tip 142. The outsole 105 includes a toe region 171 that extends substantially from the medial side of the shoe to the lateral side of the shoe at a location that begins in the vicinity of the front tip 140 and extends from there to a location that is approximately one third of the distance toward the rear tip 142.
The upper layer 107 includes a heel region 153 that extends substantially from the medial side of the shoe to the lateral side of the shoe at a location that begins in the vicinity of the rear tip 142 and extends from there to a location that is approximately one third of the distance toward the front tip 142. The lower layer 109 includes a heel region 163 that extends substantially from the medial side of the shoe to the lateral side of the shoe at a location that begins in the vicinity of the rear tip 142 and extends from there to a location that is approximately one third of the distance toward the front tip 140. The outsole 105 includes a heel region 173 that extends substantially from the medial side of the shoe to the lateral side of the shoe at a location that begins in the vicinity of the rear tip 142 and extends from there to a location that is approximately one third of the distance toward the front tip 140.
The upper layer 107 includes a middle region 152 that extends substantially from the medial side of the shoe to the lateral side of the shoe at a location that extends approximately between the toe region 151 and the heel region 153. The lower layer 109 includes a middle region 162 that extends substantially from the medial side of the shoe to the lateral side of the shoe at a location that extends approximately between the toe region 161 and the heel region 163. The outsole 105 includes a middle region 172 that extends substantially from the medial side of the shoe at a location that extends approximately between the toe region 171 and the heel region 173.
Typically, the lower layer 109 is on average thicker in the heel region 163 than it is in the toe region 161. Typically, the thickness of the lower layer 109 is less than about 45 millimeters in the heel region 163 and has an average thickness in the heel region 163 of at least about 6.5 millimeters, and is less than about 25 millimeters in the middle region 162 and the toe region 161 and has an average thickness in the middle region 162 and the toe region 161 of at least 3 millimeters. The upper layer 107 has a first density and the lower layer 109 has a second density that is different from the first density and is typically less dense than the first density. The upper layer 107 has a first compressibility and the lower layer 109 has a second compressibility that is different from the first compressibility. The compressibility of the lower layer 109 is typically relatively high. Due to this relatively high compressibility, the lower layer 109 undergoes a relatively high amount of deformation when subjected to a given load. The upper layer 107 is typically made from polyurethane, polyvinyl chloride, rubber or thermal plastic rubber. However, the upper layer 107 can be made from any other material without departing from the scope of the present invention. Typically the upper layer 107 will have a density of between about 0.400 and about 0.500 grams per cubic centimeter and a durometer between about 50 and about 75 Shore A (ASTM D2240). The lower layer 109 is made of a compressible and deformable yet resilient material which may or may not be the same material of which the upper layer 107 is made. Typically the lower layer 109 will have a density of between about 0.325 and about 0.419 grams per cubic centimeter and a durometer between about 15 and about 38 Shore A (ASTM D2240). The upper layer 107 has a top surface 113 that is typically positioned below an insole board (not shown) which is typically positioned below the sockliner 101. The upper layer 107 also has a bottom surface 115 that is secured to and in substantially continuous contact with the top surface 117 of the lower layer 109 by either friction and/or an adhesive and/or other similar means. Alternatively, substantially the entire bottom surface 115 of the upper layer 107 may be molded to substantially the entire top surface 117 of the lower layer 109. The outsole 105 has a top surface 119. The bottom surface 121 of the lower layer 109 is positioned above the top surface 119 of outsole 105.
When viewed while moving from the frontmost point 150 of the upper layer 107 to the rearmost point 154 of the upper layer 107, the bottom surface 115 of the upper layer 107, as shown in a preferred embodiment in
The bottom surface 115 of the upper layer 107, as shown in
The bottom surface 115 of the upper layer 107, as shown in
In preferred embodiments, the top surface 117 of the lower layer 109 of the midsole 103 is in substantially continuous contact with the bottom surface 115 of the upper layer 107 of the midsole. Due to this substantially continuous contact between top surface 117 and bottom surface 115 in these preferred embodiments, each convexity in the bottom surface 115 has a corresponding concavity in the top surface 117 and each concavity in the bottom surface 115 has a corresponding convexity in the top surface 117. In other embodiments, such substantially continuous contact between top surface 117 and bottom surface 115 may not be present.
The outsole 105 has a top surface 121 and a bottom surface 123. The outsole 105 may curve upwardly in the heel region. When the shoe is in its typical upright, unloaded state, the frontmost point 170 is relatively high above the ground. From a point at or near the vicinity of the frontmost point 170, the outsole 105 has a gradual downward curve 195 that continues through at least a portion of the toe region 171 of the outsole 105 until it becomes straight or nearly straight at some point in the middle region 172 of the outsole 105. Starting in this middle region 172, the outsole 105 has a gradual, upward curve 196 that continues to curve upward through at least a portion of the heel region 173 of the outsole 105. This gradual upward curve 196 typically continues until the outsole 105 approaches the vicinity of the rear tip 142 of the shoe. This upward curve 196 is typically sharper than downward curve 195 in the toe region 171. Upward curve 196 may be substantially sharper than shown in
The invention will now be described with reference to a preferred embodiment shown in
The midsole 303, as shown, comprises two layers. Typically, the lower layer 309 of the midsole 303 is on average thicker in the heel region 363 of the shoe than it is in the toe region 361. Typically, the thickness of the lower layer 309 is less than about 45 millimeters thick in the heel region 363 of the shoe and has an average thickness in the heel region 363 of at least about 6.5 millimeters, and is less than about 25 millimeters thick in the middle region 362 and the toe region 361 of the shoe and has an average thickness in the middle region 362 and the toe region 361 of at least about 3 millimeters. The upper layer 307 has a first density and the lower layer 309 has a second density different from the first density and is typically less dense than the first density. The upper layer 307 has a first compressibility and the lower layer 309 has a second compressibility that is different from the first compressibility. The compressibility of the lower layer 309 is typically relatively high. Due to this relatively high compressibility, the lower layer 309 undergoes a relatively high amount of deformation when subjected to a given load. The upper layer 307 is typically made from polyurethane, polyvinyl chloride, rubber or thermal plastic rubber. However, the upper layer 307 can be made from any other material without departing from the scope of the present invention. Typically the upper layer 307 will have a density of between about 0.400 and about 0.500 grams per cubic centimeter and a durometer between about 50 and about 75 Shore A (ASTM D2240). The lower layer 309 is made of a compressible and deformable yet resilient material which may or may not be the same material of which the upper layer 307 is made. Typically the lower layer 309 will have a density of between about 0.325 and about 0.419 grams per cubic centimeter and a durometer between about 15 and about 38 Shore A (ASTM D2240). The top surface 313 of the upper layer 307 is typically positioned below an insole board (not shown) which is typically positioned below the sockliner 301. The upper layer 307 has a bottom surface 315 that is located above the top surface 317 of the lower layer 309. The lower layer 309 has a bottom surface 321. The outsole 305 has a top surface 319. The bottom surface 321 of the lower layer 309 is located above the top surface 319 of the outsole 305
The bottom surface 315 of the upper layer 307, as shown in a preferred embodiment in
The bottom surface 315 of the upper layer 307, as shown in
The outsole 305 has a top surface 319 and a bottom surface 323. The outsole 305 may curve upwardly in the heel region. When the shoe is in its typical upright, unloaded state, the frontmost point 370 is relatively high above the ground. From a point at or near the vicinity of the frontmost point 370, the outsole 305 has a gradual downward curve 395 that continues through at least a portion of the toe region 371 of the outsole 305 until it reaches a virtually flat surface in the middle region 372 of the outsole 305. Starting in this middle region 372, the outsole 305 has a gradual, upward curve 396 that continues to curve upward through at least a portion of the heel region 373 of the outsole 305. This gradual upward curve 396 typically continues until the outsole 305 approaches the vicinity of the rear tip 342 of the shoe. This upward curve 396 is typically sharper than the curve in the toe region 371. Upward curve 396 may be substantially sharper than shown in
As shown in
In preferred embodiments, the top surface 317 of the lower layer 309 of the midsole 303 is in substantially continuous contact with the bottom surface 315 of the upper layer 307 of the midsole. Due to this substantially continuous contact between top surface 317 and bottom surface 315 in these preferred embodiments, each convexity in the bottom surface 315 has a corresponding concavity in the top surface 317 and each concavity in the bottom surface 315 has a corresponding convexity in the top surface 317. In other embodiments, such substantially continuous contact between top surface 317 and bottom surface 315 may not be present.
The invention will now be described with reference to an alternative embodiment shown in
The midsole 803, as shown, comprises two layers. Typically, the lower layer 809 of the midsole is on average thicker in the heel region 863 of the shoe than it is in the toe region 861. Typically, the thickness of the lower layer 809 is less than about 45 millimeters thick in the heel region 863 of the shoe and has an average thickness in the heel region 863 of at least about 6.5 millimeters, and is less than about 25 millimeters thick in the middle region 862 and the toe region 861 of the shoe and has an average thickness in the middle region 862 and the toe region 861 of at least about 3 millimeters. The upper layer 807 has a first density and the lower layer 809 has a second density different from the first density and is typically less dense than the first density. The upper layer 807 has a first compressibility and the lower layer 809 has a second compressibility that is different from the first compressibility. The compressibility of the lower layer 809 is typically relatively high. Due to this relatively high compressibility, the lower layer 809 undergoes a relatively high amount of deformation when subjected to a given load. The upper layer 807 is typically made from polyurethane, polyvinyl chloride, rubber or thermal plastic rubber. However, the upper layer 807 can be made from any other material without departing from the scope of the present invention. Typically the upper layer 807 will have a density of between about 0.400 and about 0.500 grams per cubic centimeter and a durometer between about 50 and about 75 Shore A (ASTM D2240). The lower layer 809 is made of a compressible and deformable yet resilient material which may or may not be the same material of which the upper layer 807 is made. Typically the lower layer 809 will have a density of between about 0.325 and about 0.419 grams per cubic centimeter and a durometer between about 15 and about 38 Shore A (ASTM D2240). The top surface 813 of the upper layer 807 is typically positioned below an insole board (not shown) which is typically positioned below the sockliner 801. The upper layer 807 has a bottom surface 815 that is located above the top surface 817 of the lower layer 809. The lower layer 809 has a bottom surface 821. The outsole 805 has a top surface 819. The bottom surface 821 of the lower layer 809 is located above the top surface 819 of the outsole 805.
The bottom surface 815 of the upper layer 807, as shown in a preferred embodiment in
The bottom surface 815 of the upper layer 807, as shown in
The bottom surface 815 of the upper layer 807, as shown in
The bottom surface 815 of the upper layer 807, as shown in
As further shown in the embodiment in
The outsole 805 has a top surface 819 and a bottom surface 823. The outsole 805 may curve upwardly in the heel region 873. When the shoe is in its typical upright, unloaded state, the frontmost point 870 is relatively high above the ground. In this embodiment, from a point at or near the vicinity of the frontmost point 870, the outsole 805 has a gradual downward curve 897 that continues through at least a portion of the toe region 861 of the outsole 805, then continues to curve gradually downward in the middle region 872 of the outsole and then begins to curve upwardly forming an upward curve 898 in the heel region 873 of the outsole 805. This gradual upward curve 898 typically continues until the outsole 805 approaches the vicinity of the rear tip 842 of the shoe. This upward curve 898 is typically sharper than the curve in the toe region 871. Upward curve 898 may be substantially sharper than shown in
As shown in
In normal use of the shoe, the user steps forward with the rear portion of the user's heel stepping on the ground first. When this happens, the lower layer 809 of the midsole 803 in the heel region 853 that is made of less dense and more readily compressible material, compresses and deforms, causing the heel of the user's foot to sink toward the ground to a greater extent than it would sink while wearing a conventional shoe. Due to the concavity 883, the lower layer 809 is relatively thick in the heel region 863. Since this relatively thick heel region 863 of the lower layer 809 is also relatively soft and highly compressible, it mimics the effect of walking on a sandy beach, thereby requiring the user to exert more energy while walking than would be required when walking while wearing conventional shoes. Additionally, since the heel region 863 of the lower layer 809 is relatively thick and highly compressible, it has a degree of inherent lateral and transverse instability that is not present in conventional shoes. This inherent instability forces the user to make a balancing effort and use muscles and muscle control and coordination to maintain a normal walking gait that would not be required with conventional shoes.
As the step continues, the user's weight shifts to the center of the shoe and the shoe rolls forward in a smooth motion without the user having to overcome any abrupt pivot points. The lower layer 809 of the midsole 803 in the middle region 862 and then in the toe region 861, compresses and deforms, allowing the user's foot in those regions to sink toward the ground more than it would sink if the user were wearing conventional shoes. The convexities 880, 882 in the toe region 861 and/or middle region 862, limit compression of the lower layer 809 in those areas and thereby provide stability. The user then completes the step by pushing off with the forefoot ball region of the user's foot. All of this simulates the effects and the fitness benefits of walking on a sandy beach or on a giving or uneven soft surface regardless of the actual hardness of the surface.
While the foregoing detailed description sets forth exemplary embodiments of a shoe in accordance with the present invention, it is to be understood that the above description is illustrative only and not limiting of the disclosed invention. Indeed, it will be appreciated that the embodiments discussed above and the virtually infinite embodiments that are not mentioned could easily be within the scope and spirit of the present invention.
This application claims the benefit of priority based on Provisional Application No. 61/122,911 filed Dec. 16, 2008.
Number | Name | Date | Kind |
---|---|---|---|
4128950 | Bowerman et al. | Dec 1978 | A |
4348821 | Daswick | Sep 1982 | A |
4439937 | Daswick | Apr 1984 | A |
4757620 | Tiitola | Jul 1988 | A |
4798010 | Sugiyama | Jan 1989 | A |
4854057 | Misevich et al. | Aug 1989 | A |
5131173 | Anderie | Jul 1992 | A |
5528842 | Ricci et al. | Jun 1996 | A |
5572805 | Giese et al. | Nov 1996 | A |
5592757 | Jackinsky | Jan 1997 | A |
5718064 | Pyle | Feb 1998 | A |
5822886 | Luthi et al. | Oct 1998 | A |
6341432 | Muller | Jan 2002 | B1 |
6389713 | Kita | May 2002 | B1 |
6625905 | Kita | Sep 2003 | B2 |
6662469 | Belley et al. | Dec 2003 | B2 |
6729046 | Ellis, III | May 2004 | B2 |
6782639 | Muller | Aug 2004 | B1 |
6826852 | Fusco | Dec 2004 | B2 |
7010867 | Brown | Mar 2006 | B2 |
7290356 | Fuerst | Nov 2007 | B2 |
7779557 | Teteriatnikov et al. | Aug 2010 | B2 |
7877897 | Teteriatnikov et al. | Feb 2011 | B2 |
7886460 | Teteriatnikov et al. | Feb 2011 | B2 |
7941940 | Teteriatnikov et al. | May 2011 | B2 |
20040154188 | Laska | Aug 2004 | A1 |
20040250447 | Ellis, III | Dec 2004 | A1 |
20070294915 | Ryu et al. | Dec 2007 | A1 |
20080016724 | Hlavac | Jan 2008 | A1 |
20080163513 | Chapman et al. | Jul 2008 | A1 |
20080229624 | Mueller | Sep 2008 | A1 |
20090183393 | Lee | Jul 2009 | A1 |
20100146825 | Teteriatnikov et al. | Jun 2010 | A1 |
20100307028 | Teteriatnikov et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
0999764 | Jul 2003 | EP |
1124462 | Sep 2004 | EP |
2005067754 | Jul 2005 | EP |
135334 | Nov 1975 | JP |
51138237 | Nov 1976 | JP |
5781301 | May 1982 | JP |
57188201 | Nov 1982 | JP |
5891906 | Jun 1983 | JP |
58165801 | Sep 1983 | JP |
58190401 | Nov 1983 | JP |
60150701 | Aug 1985 | JP |
6131101 | Mar 1986 | JP |
61154503 | Jul 1986 | JP |
1110603 | Jul 1989 | JP |
520528 | Oct 2001 | JP |
247218 | Sep 2006 | JP |
204712 | Oct 2006 | JP |
3917521 | Feb 2007 | JP |
WO 2009061103 | May 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100146825 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
61122911 | Dec 2008 | US |