Shoelaces (shoe-strings, shoelaces, boot laces) are commonly used to secure shoes, boots, and other footwear on a user's foot. A shoelace generally comprises a string or cord (one for each shoe), finished off with an aglet, or stiff section. The shoelace passes through a series of holes or eyelets disposed on flaps included on either side of a shoe that bridge an opening into which a person's foot is inserted. The flaps are generally disposed opposite the shoe's sole or tread. The shoelace is woven in an overlapping manner between the holes or eyelets on the flaps. As a result, a user can tension the shoelace to draw the flaps together and secure the shoe on a foot. Shoelaces are secured by forming a knot between the ends of the cord so the shoelace remains tensioned. This process of tensioning and forming a knot is often referred to as tying one's shoes. A user can loosen the shoe by untying the knot and allowing the lace to become slack so the flaps can move away from the opposing flap. This permits a user to remove the shoe.
Apparatus and techniques for securing a shoelace are described. In accordance with embodiments, the shoelace is secured without forming a knot with the ends of the shoelace. In described examples, a shoe tie assembly includes a housing with at least two apertures configured to individually receive one of the ends of the shoelace that is inserted in a first direction along a lengthwise axis of the shoelace. A securing device is included in the assembly to secure the shoelace and housing to substantially permit movement of the shoelace in the first direction generally and to substantially prevent movement of the shoelace in a second direction that is generally opposite the first direction in the first configuration. The securing device is also operable to obtain a second configuration in which the securing device permits the shoelace to move in the second direction.
This Summary is provided solely to introduce subject matter that is fully described in the Detailed Description and Drawings. Accordingly, the Summary should not be considered to describe essential features nor be used to determine scope of the claims.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items.
Overview
Tying shoes is a problem for some people. Tying shoelaces can require a significant amount of manual dexterity to tie a knot. Some young children and people with arthritis and similar medical conditions experience significant difficulty tying knots. Further, some people are unable to reach their shoelaces in order to tie or untie them. For example, some people are insufficiently flexible to bend to tie his or her shoelace. Other people may only have use of a single functioning hand, e.g. an amputee or a person suffering from paralyses. This can be a source of great concern, may cause the person embarrassment, have them rely on another person to tie his or her shoelaces, or only wear loose-fitting slip-on type footwear. Slip-on type footwear may pose a tripping hazard for people who also suffer from limited mobility. The prevalence of footwear with shoelaces also significantly limits the footwear selection for those who are unable to tie their own shoes.
Accordingly, shoelace tie assemblies are described that permit securing of a shoelace so footwear can be secured to a person's foot without forming a knot in the shoelace. Shoelace tie assemblies in accordance with the present disclosure can be operated with a single hand. In embodiments, a shoelace tie assembly includes a housing configured with a securing device that is configured to hold an end portion of the shoelace securely under tensions, such as when the shoelace is drawing opposing flaps of a shoe together. The securing device, in embodiments, is configured to substantially permit the end portion to move in a first direction while preventing it from moving in the opposite direction. For example, the securing device in a first configuration is constructed so a user can tension the shoelace along its length while the securing device prevents it from moving in the opposite direction that would cause the shoelace to loosen. The securing device can be operated to obtain a second configuration in which the securing device permits the end portion to move in a second direction that is opposite the first direction. For example, an external force is exerted on the securing device to cause it to release the end portion so the shoelace can loosen and a user can slip his/her foot out of the shoe.
Techniques are also described for securing a shoelace without forming a knot between the shoelace's ends. In embodiments, the technique includes tensioning a shoelace in a first direction where a tab is biased to permit movement in a first direction while preventing movement of the shoelace in a second direction that is opposite the first direction. An external force can be exerted on the tab to cause the tab to obtain a second configuration so the tab permits the shoelace to move in the second direction, so for example, the shoelace can be loosened.
Example Shoe Tie Assembly
With reference to
The shoelace 104, as shown, passes between eyelets 108 (one is referenced) included on opposing flaps formed in the shoe 106 generally opposite a sole 110 or tread of the shoe. The shoelace 104 passes between the eyelets so it weaves between the eyelets on the opposing flaps. In this arrangement, the lace 104 can be tensioned to draw the flaps (112a, 112b) together to at least partially secure the flaps around the wearer's foot to secure the shoe to the foot. Although eyelets are shown, other structures may be used for substantially the same purpose. Example structures include, but are not limited to, holes, eyelets, loops, and/or hooks in a piece of footwear. Typically, shoelaces 104 are sized so a portion of the lace extends beyond the last eyelet through which the shoelace is passed to allow the shoelace to be tied in a knot. For example, previously, a first end portion 114a of the shoelace would be tied in a bow-knot with a second end portion 114b of the shoelace 104 that extends from the opposite flap.
Referring to
The tab 220, in the first configuration, can permit a user to pull the first end portion of the shoelace to tension it so when the user releases the lace, the tab 220 catches the lace and prevents it from moving substantially in the second direction 224. For example, a user can pull on an end of the shoelace at an acute angle with respect to a plane encompassing the housing to place additional tension on the lace with the tab in the first configuration. The first and second directions, in embodiments, correspond to the axial or lengthwise direction of the shoelace 104.
It is to be appreciated that additional apertures, e.g., slots can be included in the housing. The housing can define a second slot 226 adjacent to the first slot 218 so that the first slot 218 and the second slot 226 are generally aligned with opposing apertures on the shoe (e.g. opposing eyelets). The second tab 228 is configured and/or operates in substantially a similar manner to that described with respect to the first tab 220. Thus, the second tab 228 can be configured to substantially permit a second end portion of the shoelace to move in a third direction 230 (e.g., a tension direction) and substantially prevent the second end portion from moving in a fourth direction 232 (e.g., in a direction that loosens the lace) in a first configuration. The third and fourth directions can correspond to the axial or lengthwise direction of the shoelace 104 and it is to be apparent that the directions may coincide with another direction, e.g. the second and third directions may coincide such as if the shoelace 104 is laid in a straight line.
Referring again to
Referring now to
As may be seen in
The tensioner 440 is positioned in the housing 416 so it is operable to engage one or more of the end portions 514a, 514b to tension and/or secure one or more of the end portions. The tensioner 440, as shown, is formed with a central portion 546 that connects two curved wings 548a, 548b that arch in a direction opposite the central portion 546, e.g., to form a “W” shaped profile. The tensioner 440 can be formed so it is biased against one or more interior wall of the housing, e.g., interior surfaces generally opposite the central portion 546. For example, the curved wings of the tensioner may exert a spring force against an interior wall of the housing to capture, respectively, the end portions that pass between the surface of the wall and the curved wing. Although the tensioner 440 has been particularly described, it is to be appreciated that a variety of tensioners with various biasing systems can be employed. It is the intention of this disclosure to encompass such variation.
In embodiments, one or more of the wall, this is to say the interior surface, or a portion of the curved wings facing the wall's surface include teeth or are textured to assist in securing the shoelace in place. For example, a portion of the curved wings 548a, 548b includes a series of teeth spaced apart along the length of the curved wing. Thus, the tensioner 440, where not influenced by an external force, can act as a means for securing the shoelace in place relative to the assembly.
The assembly 400 and/or tensioner 440 in accordance with embodiments of the present disclosure can be configured so an end portion of the shoelace is substantially permitted to move in a first direction 522 while being substantially prevented from moving in a second direction 524 opposite the first direction. For example, the assembly 400 is configured so the first end portion 514a can move in a first direction 522 (e.g., a direction that permits the shoelace to tighten the flaps 412a, 412b) and prevents movement in a second direction 524 (e.g., a loosening direction) when in a first configuration. In this manner, a user can pull on the first end portion in the first direction 522 to tension the shoelace so the flaps are drawn closer together. The first configuration may be associated with the tensioner being un-actuated, e.g., no external force applied.
With continued reference to
Additionally, it is to be appreciated that an aperture can be formed without a tab. For example, a circular aperture can be formed to receive the end of the shoelace after it has passed (spatially) through a slot included a tab.
The structures described herein, e.g., the housing, tabs and tensioner can be formed of a variety of materials or combination of material based on design preference, aesthetics, and so forth. While it is contemplated that one or more of these structures may be formed of plastic, other materials can be used as well. For example, a housing may be formed of metal while a tab or tensioner is formed of plastic. Example plastics that are suitable for use include polycarbonates, nylon, nylon 6, 6, and the like plastics, or combination of plastics. As is to be appreciated, different components may be formed of different materials. The tensioner 440 may be formed of nylon, while the housing may be formed of a polycarbonate.
It is to be apparent that the structures, techniques and approaches described with respect to
Example Methods
The following discussion describes methods that may be implemented in conjunction with embodiments of the shoe tie assembly described above. The methods are shown as a set of blocks that specify operations and are not necessarily limited to the order shown. In portions of the following discussion, reference may be made to the shoe tie assemblies and/or its components. The techniques described below are independent of the structures described above, meaning that the techniques may be implemented in a variety of ways and are not necessarily limited to the structures illustrated in
As illustrated, a first end portion of a shoelace is tensioned in a first direction where a shoe tie assembly is in a first configuration (Block 602). For example, a shoelace may be tensioned so it draws two or more flaps included on a piece of footwear together in order to tighten the footwear on a user's foot. In embodiments in accordance with the present method, the first end portion is substantially prevented from moving in a second direction (e.g., a loosening direction) that is generally opposite the first direction. In the previous example, a tab or a wing included in a shoe tie assembly may function to catch the first end portion to prevent it from coming loose once the strain is released from a free end of the shoelace. Further, the tension placed on the first end portion may be sufficient to overcome a spring bias on the tab or wing.
In embodiments, an external force is exerted on a tab so the shoe tie assembly changes to a second configuration (Block 604). The second configuration can be associated with the shoe tie assembly being configured to substantially permit an associated shoelace to move substantially freely in a second direction, e.g., a loosening direction. For example, a force is applied to a wing included in a tensioner to cause it to release a shoelace to permit two more flaps included on a boot to move apart from one another so a user can remove his/her foot from an opening formed in the boot adjacent the flaps.
Although the subject matter has been described in language specific to structural features and/or process operations, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
This application claims priority to U.S. Provisional Application Ser. No. 61/684,957 under 35 U.S.C. 119(e), entitled: SHOELACE TIE ASSEMBLY, filed on Aug. 8, 2012, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
841419 | Molkenbur | Jan 1907 | A |
5572778 | Stenner et al. | Nov 1996 | A |
5924177 | Jongejan | Jul 1999 | A |
20050210639 | Cuisinier | Sep 2005 | A1 |
20110113606 | Sloan | May 2011 | A1 |
20140020263 | Theuvenet | Jan 2014 | A1 |
20140115842 | Sloan | May 2014 | A1 |
20150223569 | Cox | Aug 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
61684957 | Aug 2012 | US |