This application is a continuation of International application No. PCT/CN2016/083143, filed on May 24, 2016 which claims the benefits of priority of CN application No. 201610268734.7, filed on Apr. 27, 2016, the content of which are incorporated herein by reference.
The disclosure relates to a shoe, and more particularly to a shoe capable of adjusting heel height.
In order to be polite or to seem taller, a lady normally wears high-heel shoes when going out, however, as wearing high-heel shoes for a long time, the feet of the lady may contract edema or a sprained ankle, so that not only the lady is easy to fall down, but also ankle injury may be caused to the lady thereby affecting the health of the lady and providing uncomfortable experience. Therefore, a user may carry both of a pair of flat shoes and a pair of high-heel shoes at the same time, or carry two high-heel shoes with different heights alternatively so as to meet the need of the user.
Accordingly, many kinds of high-heel shoes able to be changed the length of the heel are available in the market. However, product designs of these kinds of high-heel shoes are often complicated and inconvenient, thereby reducing the willingness of users to purchase and use.
Therefore, ways to provide a solution to effectively solve the aforementioned inconvenience and shortages and to increase the competitiveness of industries will be seriously concerned.
An objection of the disclosure is to provide a shoe capable of adjusting heel height, which can solve the problem mentioned above, that is, the product design of a high-heel shoe is simplified so as to improve the willingness of users to purchase and use.
According to one embodiment, the shoe capable of adjusting heel height includes a front bracket, a rear bracket, a telescopic linkage rack, a telescopic support member, a linking member and a locking mechanism. The rear bracket is rotatably connected to the front bracket. The telescopic linkage rack is pivotally connected to the rear bracket, and is used to be telescoped with the movement of the rear bracket. The telescopic support member is fixedly connected to the telescopic linkage rack, and is used to be simultaneously telescoped in the same direction and in the same proportion with the telescoping degree of the telescopic linkage rack. The linking member is pivotally connected to the front bracket and the telescopic support member, and is arranged spaced to the rear bracket. The locking mechanism is used to removably fix the telescopic support member for limiting the telescoping degree of the telescopic support member.
Thus, when a user's human foot puts into the shoe of the embodiment, and the user lifts a heel part of the human foot to bend a toe part of the human foot, by folding the rear bracket in relative to the front bracket, the telescopic support member can be retracted with the movement of the linking member and the rear bracket for changing the length of the telescopic support member. Therefore, in the embodiment, the extending length of the telescopic support member can be controlled to meet the user's requirements in accordance with the bending degrees of the shoe board, thereby solving the problem that the user must have high-heel shoes with different heel heights at the same time.
In one or more embodiments of the disclosure, the telescopic linkage rack includes a plurality of first shaft pins, a plurality of second shaft pins, a plurality of first connecting rods and a plurality of second connecting rods. The first connecting rods are parallel one another. The second connecting rods are parallel one another. Each of the first connecting rods and each of the second connecting rods which are adjacent with each other are crossed to be pivotally connected to each other through one of the first shaft pins. The first connecting rods and the second connecting rods are further pivotally connected to one another with an end-to-end manner through the second shaft pins. When the first connecting rods and the second connecting rods are rotated to gradually alter gaps between the first shaft pins from each other, the length of the telescopic linkage rack is correspondingly changed.
In one or more embodiments of the disclosure, the rear bracket is pivotally connected to one of the first connecting rods through one of the first shaft pins and one of the second shaft pins. When the rear bracket moves the telescopic linkage rack to change the length of the telescopic linkage rack correspondingly, the telescopic linkage rack is moved laterally.
In one or more embodiments of the disclosure, the telescopic support member includes a plurality of sleeves. The sleeves are arranged concentrically and telescopically sleeved one another in sequence. At least two of the first shaft pins are fixedly connected to at least two of the sleeves in sequence along a major axis direction of the telescopic support member.
In one or more embodiments of the disclosure, the innermost one of the sleeves is formed with a through space therein, and the telescopic linkage rack is received within the through space.
In one or more embodiments of the disclosure, the outermost one of the sleeves is formed with a plurality of securing holes. The securing holes are arranged along an arc-lined arrangement.
In one or more embodiments of the disclosure, the locking mechanism includes a fixing pin. The fixing pin is pluggably inserted one of the securing holes for fixing the sleeves to determine one of various lengths that the telescopic linkage rack is able to be changed correspondingly.
In one or more embodiments of the disclosure, the locking mechanism further includes a frame body, a spring and an operating portion. The frame body has a first end, a second end and a pivotal portion disposed between the first end and the second end. The fixing pin is disposed on the first end of the frame body. The spring is connected to the first end of the frame body, for pushing the fixing pin back to the securing hole. One end of the operating portion is abutted against the second end of the frame body, and the other end of the operating portion is exposed outwards from the shoe. Therefore, when the operating portion rotates the frame body, the fixing pin is withdrawn from the one of the securing holes with the rotation of the frame body to release from fixing the sleeves.
In one or more embodiments of the disclosure, one end of the front bracket is provided with a protruding rib. The rear bracket is pivotally connected to the end of the front bracket through at least one first pivot, and pivotally connected to the telescopic linkage rack through at least two second pivots, the linking member is pivotally connected to the protruding rib through at least one third pivot, and pivotally connected to the telescopic support member through at least one fourth pivot. A linkage constrained assembly is collectively defined by the protruding rib of the front bracket, the rear bracket, the telescopic linkage rack, the telescopic support member and the linking member. The first pivot, the second pivots, the third pivot and the fourth pivot are parallel one another.
According to another embodiment, the shoe capable of adjusting heel height includes a shoe body, a shoe sole layer, a linkage constrained assembly and a locking mechanism. The shoe sole layer has a penetrating opening. The linkage constrained assembly is connected to the shoe body and the shoe sole layer, and the linkage constrained assembly includes a front bracket, a rear bracket, a retractable shoe-heel and a linking member. The front bracket is provided with a protruding rib. The rear bracket is rotatably connected to the front bracket. The retractable shoe-heel is retractably received within the penetrating opening, and pivotally connected to the rear bracket. The linking member is arranged spaced to the rear bracket, and pivotally connected to the protruding rib and the retractable shoe-heel. The locking mechanism is used to removably fix the retractable shoe-heel for limiting the telescoping degree of the telescopic support member. Thus, when the linkage constrained assembly is operated to be retracted, the retractable shoe-heel is retracted with the movement of the linking member and the rear bracket for changing a length of the retractable shoe-heel.
In one or more embodiments of the disclosure, the retractable shoe-heel includes a telescopic linkage rack and a telescopic support member. The telescopic linkage rack is pivotally connected to the rear bracket, and is used to be telescoped with the movement of the rear bracket and the linking member. The telescopic support member is fixedly connected to the telescopic linkage rack, and used to be simultaneously telescoped in the same direction and in the same proportion with the telescoping of the telescopic linkage rack.
Compared with the prior art, the disclosure is provided with following beneficial effects: a shoe capable of adjusting heel height of the disclosure is able to simplify the product design of a high-heel shoe so as to improve the willingness of users to purchase and use.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the disclosure as claimed.
In order to make the aforesaid as well as other aspects, features, advantages, and embodiments of the disclosure more apparent, the accompanying drawings are described as follows:
Hereinafter, the plural embodiments of the disclosure will be disclosed by way of example, and a number of practical details will be described in the following description for clarity of explanation. It will be understood by those skilled in the art, however, that these practical details are not necessary in the presently described embodiments, and are not intended to limit the disclosure. In addition, for the sake of simplicity of schema, some conventionally preferred structures and elements will be schematically illustrated in the drawings. In addition, in order to facilitate the reader to watch, the size of the elements in the figure is not according to the actual proportion of drawings.
Thus, when the linkage constrained assembly is operated to be retracted, for example, the rear bracket 120 is rotated relative to the front bracket 110, through the linking movement of the rear bracket 120 and the linking member 300, the retractable shoe-heel 200 of the embodiment can be telescoped along a gravity direction GV so as to change the length of the retractable shoe-heel 200. Therefore, the user's requirements can be met and the problem that the user must have high-heel shoes with different heel heights at the same time can be solved.
For example, the retractable shoe-heel 200 includes a telescopic linkage rack 210 and a telescopic support member 220. The telescopic linkage rack 210 is able to be retracted and extended. The telescopic linkage rack 210 is pivotally connected to one side of the rear bracket 120 which is opposite to the front bracket 110 so that the telescopic linkage rack 210 can be telescoped with the collective movement of the rear bracket 120 and the linking member 300 so as to change a total length of the telescopic linkage rack 210. The telescopic support member 220 is pivotally connected to one side of the linking member 300 which is opposite to the protruding rib 111. The telescopic support member 220 is able to be retracted and extended, and the telescopic support member 220 is fixedly connected to the telescopic linkage rack 210. Thus, the telescopic support member 220 can be simultaneously telescoped in the same direction and in the same proportion with the telescoping degree of the telescopic linkage rack 210.
More specifically, the rear bracket 120 is pivotally connected to the front bracket 110 through at least one first pivot R1, and pivotally connected to the telescopic linkage rack 210 through a number of (e.g., two) second pivots R2, so that the rear bracket 120 is rotatable relative to the front bracket 120 about the first pivot R1. The telescopic linkage rack 210 is rotatable relative to the rear bracket 120 about the second pivot R2. The linking member 300 is pivotally connected to the protruding rib 111 through at least one third pivot R3, and pivotally connected to the telescopic support member 220 through at least one fourth pivot R4 so that the linking member 300 can be rotated relative to the protruding rib 111 about the third pivot R3, and the telescopic support member 220 can be rotated relative to the linking member 300 about the fourth pivot R4. Be aware that the first pivot R1, the second pivots R2, the third pivot R3 and the fourth pivot R4 are parallel one another, but are not coaxial.
Specifically, the shoe plate 100 is provided with an upper side face 101 and a lower side face 102 which are arranged oppositely with each other. The shoe body 400 is disposed on the upper side face 101 of the shoe plate 100, and the retractable shoe-heel 200, the linking member 300 and the shoe sole layer 500 are collectively disposed on the lower side face 102. In addition, the rear bracket 120 of the shoe plate 100 is further formed with a recess 121. The recess 121 exposes a part of the sole layer 500 and the penetrating opening 510. The linking member 300 is further formed with a break 301 exposing the penetrating opening 510 and the recess 121, and the retractable shoe-heel 200 is received within the penetrating opening 510, the recess 121 and the break 301.
In addition, as long as the telescopic linkage rack can fix several or all of the sleeves sequentially, the telescopic linkage rack does not have to be received inside the telescopic support member. In other embodiments, the telescopic linkage rack can be placed outside the telescopic support abreast (not shown).
Furthermore, the telescopic linkage rack 210 includes a plurality of first connecting rods 211, a plurality of second connecting rods 212, a plurality of first shaft pins 213 and a plurality of second shaft pins 214. Each of the first connecting rods 211 and each of the second connecting rods 212 which are adjacent with each other are crossed to be pivotally connected to each other through one of the first shaft pins 213. The first connecting rods 211 and the second connecting rods 212 are further pivotally connected to one another with an end-to-end manner through the second shaft pins 214. The first connecting rods 211 are parallel one another, however, these first connecting rods 211 are not limited to be in the same length or the same type. The second connecting rods 212 are parallel one another, however, these second connecting rods 212 are not limited to be in the same length or the same type. Also, the first connecting rods 211 and the second connecting rods 212 are not limited to be in the same length or the same type.
Thus, when the first connecting rods 211 and the second connecting rods 212 are rotated to gradually alter (e.g., reduced or enlarged) gaps between the first shaft pins 213 from each other, the length of the telescopic linkage rack 210 is correspondingly changed (e.g., reduced or enlarged).
It is noted, since the telescopic linkage rack 210 is located in the through space 222 of the innermost one of the sleeves 221, and several or all of the first shaft pins 213 are respectively fixedly connected to several or all of the sleeves 221 along the major axis direction LA of the telescopic linkage rack 210 sequentially, thus, the telescopic support member 220 can be simultaneously telescoped in the same direction and in the same proportion with the telescoping degree of the telescopic linkage rack 210.
In practice, in order to give way for the first shaft pins 213 of the sleeve 221 so as to fold the sleeves 221 together, except for a part of the sleeve 221 connecting to the linking members 300, each of the remaining of the sleeves 221 is respectively provided with a slit 223. In an order from the outside to the inside of the sleeves 221, the slits 223 of the sleeves 221 are gradually changed from small to large in length.
As shown in
In other words, when the first connecting rods 211A of the telescopic linkage rack 210 are stopped rotating, the telescopic linkage rack 210 and the telescopic support member 220 can be prevented from being telescopic in the gravity direction, therefore, the lengths of the telescopic linkage rack 210 and the telescopic support member 220 (i.e., retractable shoe-heel 200) which are exposed outwards from the shoe 10 can be fixed.
In order to position and stop the first connecting rods 211A rotating of the telescopic linkage rack 210, in the embodiment, the outermost sleeve 221 is formed with a plurality of securing holes 224. The securing holes 224 are arranged on the outermost sleeve 221 along an arc-lined arrangement which matches the trajectory curvature of the displacement of the telescopic linkage rack 210.
Because each of the securing holes 224 corresponds to one of various lengths that the telescopic linkage rack 210 is able to be changed correspondingly, for example, the telescopic support member 220 has four securing holes 224. When each of the securing holes 224 is plugged for limiting the displacement of the telescopic linkage rack 210, four different lengths of the retractable heel 200 which are extended outwardly can be provided.
However, the disclosure is not limited thereto, except the locking mechanism 600 having the frame body 610, the spring 630, and the operating portion 640 therein, as long as the telescopic support member 220 can be limited to determine the length of the telescopic support member 220 correspondingly, any specific form of the locking mechanism is not limited in the disclosure. For example, the locking mechanism includes a fixing pin (not shown). The fixing pin is a separate object, and the fixing pin is pluggably inserted into one of the fixing holes independently for restricting the movement of the sleeves.
Thus, when the heel height of the shoe is desired to be increased, the user first presses the operating portions 640 of the locking mechanisms 600 to withdraw the fixing pin 620 back from the securing hole 224 thereby releasing the restriction for the telescoping of the telescopic support member 220 (refer to
Thus, the extending length of the telescopic support member in the embodiment can be controlled to meet the user's requirements in accordance with the bending degrees of the shoe plate, thereby solving the problem that the user must have high-heel shoes with different heel heights at the same time.
It is noted, the number of the retractable shoe-heel, the linking member, the front bracket, the rear bracket, the first to fourth pivots and the lock mechanism illustrated above are only exemplary, not for limitations to the disclosure. One with ordinary skill in the field of the disclosure may adjust the number of the aforementioned elements according to the actual requirements.
Although the disclosure has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
201610268734.7 | Apr 2016 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/083143 | 5/24/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/185439 | 11/2/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3929139 | Salzman | Dec 1975 | A |
4416072 | Sarkissian | Nov 1983 | A |
5887360 | Bucalo | Mar 1999 | A |
6021586 | Bucalo | Feb 2000 | A |
6684531 | Rennex | Feb 2004 | B2 |
6901686 | Hayes | Jun 2005 | B2 |
8707582 | Klassen | Apr 2014 | B2 |
20050166422 | Schaeffer | Aug 2005 | A1 |
20100146817 | Crispo | Jun 2010 | A1 |
20110119954 | Ortiz | May 2011 | A1 |
20120055048 | Haupt | Mar 2012 | A1 |
20130160329 | Peyton | Jun 2013 | A1 |
20140165428 | Freschi | Jun 2014 | A1 |
20150007456 | Klassen | Jan 2015 | A1 |
20150157087 | Blumenthal | Jun 2015 | A1 |
20150201704 | Huber | Jul 2015 | A1 |
20170119090 | Chang | May 2017 | A1 |
20170231316 | Sethi | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
2376763 | May 2000 | CN |
202680689 | Jan 2013 | CN |
103238981 | Aug 2013 | CN |
203290309 | Nov 2013 | CN |
205093678 | Mar 2016 | CN |
205568038 | Sep 2016 | CN |
2959646 | Nov 2011 | FR |
20020032276 | May 2002 | KR |
20090079129 | Jul 2009 | KR |
200468008 | Jul 2013 | KR |
20130006105 | Oct 2013 | KR |
Number | Date | Country | |
---|---|---|---|
20190110555 A1 | Apr 2019 | US |