1. Field of the Invention
The present invention relates in general to a trigger assembly and, more particularly, to an adjustable trigger assembly for use in association with a crossbow.
2. Description of the Prior Art
Crossbows have been known for centuries. By allowing the shooter to mechanically retain the bow in a cocked position, the shooter is provided an advantage over a traditional archer who must utilize muscular force to retain the bow in the cocked position. In a typical crossbow assembly, a cocking mechanism is utilized whereby two hooks are applied to the bowstring to draw the bowstring rearward into engagement with a retainer pin or other device utilized to retain the bowstring in the cocked position until the trigger is pulled.
As crossbows typically utilize very strong limbs, the bowstring is under high tension. This tension requires firm engagement between the sear and the trigger assembly. Tension associated with prior art devices and the solid engagement of the sear with the trigger assembly often results in an undesirably hard and rough trigger pull. This tension associated with many prior art devices may also result in torsion of the trigger assembly, causing unanticipated early or late release of the string during the trigger pull. It would, therefore, be desirable to provide a trigger assembly which provided sufficient mechanical advantage and stability to allow for a comfortable, smooth and predictable lightweight trigger pull to maintain comfort and prevent unintentional launch of a projectile from the crossbow associated with torsion forces on the trigger. The difficulties encountered in the prior art discussed hereinabove are substantially eliminated by the present invention.
In an advantage provided by this invention, a trigger assembly is provided which allows for safer actuation of a firing assembly.
Advantageously, this invention provides an alternative trigger assembly which allows for mechanical advantage to reduce trigger pull.
Advantageously, this invention provides a trigger assembly which may be adjusted for trigger travel and trigger pull.
Advantageously, this invention provides a trigger assembly with improved dry fire characteristics.
Advantageously, this invention provides a trigger assembly which increases trigger pull comfort.
Advantageously, this invention provides a trigger assembly which reduces inadvertent actuation of a firing mechanism during trigger pull.
Advantageously, this invention provides a trigger assembly which is of a low-cost, efficient manufacture.
Advantageously, in the preferred embodiment of this invention, a trigger assembly is provided with a trigger journaled to a frame defining a projectile path. A trigger arm is coupled between the trigger and a sear. A sear is coupled to a firing assembly. The trigger arm is not parallel with the projectile path. Preferably, the connection point of the trigger arm to the trigger bar is adjustable to change the trigger draw length and pull.
The present invention will now be described, by way of example, with reference to the accompanying drawings in which:
A crossbow is shown generally as (10) in
The crossbow (10) is provided with a pivotable foot stirrup (18) to facilitate cocking of the crossbow (10). As shown in
Coupled to the risers (20) and (22) are limbs (24) and (26). The limbs (24) and (26) are constructed and coupled to the risers (20) and (22) in a manner such as that known in the art. Coupled to the first limb (24) is a first string guide, which in the preferred embodiment is a pulley (28). The pulley (28) is preferably journaled to end of the limb (24) by an axle (30). The pulley (28) is preferably journaled to the limb (24) in a manner which positions a portion of the pulley (28) forward and outward of the space defined between the limbs (24) and (26).
As shown in
If desired, two synchronized cams (not shown) may be used in place of the cam (32) and pulley (28). The cam (32) and pulley (28) are coupled to a bowstring (36) and, if desired, one or more cables (38) in a manner known in the art. The bowstring (36) is preferably located as shown in
As shown in
Like the preferred trigger bar (46), the alternative trigger bar (47) is provided with an opening (64) concentric around the trigger arm pivot axis (52). Provided within the opening (64) is a bolt (66) provided with a nut (68) and washer (70). Provided between the washer (70) and the trigger bar (46) is a trigger arm (72). As shown in
As shown in
The sear assembly (78) is journaled to the frame (12). The trigger arm (72) is coupled to the sear assembly (78) by a releasable fastener provided at one of various connection points (80), (81) and (83). While the fastener may be of any type known in the art, preferably the fastener is a bolt (84) which journals the trigger arm (72) to the sear assembly at the connection point (80).
The sear assembly (78) is journaled to the frame (12) at a sear pivot axis (86). The sear assembly (78) may be secured with a steel pin (88) provided through the sear assembly (78) and secured to the frame (12), or by any other journaling means known in the art.
As shown in
Provided forward of the sear assembly (78) is the safety assembly (98). The safety assembly (98) includes a steel safety block (100) defining a slot (102). Provided within the slot (102) is a steel safety bar (104) provided with two detents (106) and (108). Provided in the safety block (100) is a shaft (110) housing a compression spring (112), coupled to a ball (114) at the opening of the shaft (110). The ball (114) is configured to fit into the detents (106) and (108) to maintain the safety bar (104) in either the safe or fire positions.
Provided above the sear assembly (78) is the string retention assembly (116). The string retention assembly (116) includes a generally U-shaped retainer bar (118) defining a string engager (120) and a string retainer (122). The retainer bar (118) includes a sear engager (124) which is a generally flat face provided in the retainer bar (118). The frame (12) is provided with a cylindrical slot (126) within which is provided a compression spring (12) in contact with the retainer bar (118) and biasing the retainer bar (118) toward a counter-clockwise rotation around a retainer bar pivot axis (130). Provided along the retainer bar pivot axis (130) is a stainless steel pin (132) coupled to the frame (12) and journaled through a slot (134) provided in the retainer bar (118).
Journaled to the retainer bar (118) is a dry fire pin (136) which pivots on a pin (138) provided through a slot (142) in the retainer bar (118). An extension spring (142) is coupled between a post (144) coupled to the frame (12) and the dry fire pin (136), biasing the dry fire pin (136) into a counter-clockwise rotation into a “no fire” position where the dry fire pin (136) engages a recess (146) provided in the frame (12).
When it is desired to utilize the trigger assembly (42) of the present invention, the trigger (48) is adjusted as desired, utilizing the desired trigger arm (72), having the desired bend (82) and provided within the desired opening (64), (74) or (76) of the trigger bar (46). Once the desired trigger length and pull has been set, the bowstring (36) is pulled rearward toward the retainer bar (118). The compression spring (128) biases the retainer bar (118) in a counter-clockwise rotation, providing sufficient space below the string retainer (122) to allow passage of the string (36). The bowstring (36) is pulled rearward into engagement with the string engager (120) until the bowstring (36) rotates the retainer bar (118) clockwise sufficiently to compress the compression spring (128). This allows the compression spring (96) to force the sear assembly (78) counter-clockwise until the sear engager (124) clears the sear face (90), allowing the sear face (90) to move upward into alignment with the sear engager (124). The bowstring (36) may thereafter be released into the string retainer (122) with the sear face (90) holding the sear engager (124) against rotation of the retainer bar (118) and release of the bowstring (36). At this point, even if the trigger (48) is pulled, the lack of an arrow (not shown) along the rail (16) forces a “dry fire” situation. The extension spring (142) pulls the dry fire pin (136) into the dry fire orientation, engaging the recess (146) when the trigger (48) is pulled, thereby preventing the retainer bar (118) from rotating counter-clockwise sufficiently to release the bowstring (36). (
As shown in
As shown in
Once the safety bar (104) has been moved forward sufficiently so the ball (114) engages the first detent (106), the crossbow (10) may be fired as shown in
Although the invention has been described with respect to a preferred embodiment thereof, it is to be understood that it is not to be so limited since changes and modifications can be made therein which are within the full, intended scope of this invention as defined by the appended claims.
This application is a Divisional Application of U.S. Ser. No. 12/321,078.
Number | Date | Country | |
---|---|---|---|
Parent | 12321078 | Jan 2009 | US |
Child | 13066146 | US |