Shooting range target carrier

Information

  • Patent Grant
  • 6199866
  • Patent Number
    6,199,866
  • Date Filed
    Wednesday, May 19, 1999
    25 years ago
  • Date Issued
    Tuesday, March 13, 2001
    23 years ago
  • Inventors
  • Examiners
    • Canfield; Robert
    Agents
    • Seidel, Gondo, Lavorgna & Monaco, PC
Abstract
A target carrier for a shooting range. The target carrier includes a two-prong target hook wherein the shaft and prong arms are formed, detachable segments to facilitate replacement of a segment damaged by a bullet.
Description




FIELD OF THE INVENTION




This invention relates to the general field of firearm shooting ranges, and to the particular field of safety features for shooting ranges.




BACKGROUND OF THE INVENTION




There are a wide variety of firing ranges and range equipment, often depending upon whether the range is indoor and outdoor, and on the type of firearm or target the range is designed for, i.e. small bore pistol, action pistol, small bore rifle, high power rifle, airgun, shotgun, black powder, silhouette target, moving target, and et cetera. Suggested design criteria for the various types of ranges may be found in publications such as


The Range Manual


published by the National Rifle Association of America.




The present invention is directed primarily toward an indoor range with certain safety features to accommodate the use of a wide variety of firearms, extending from airguns and handguns through high power rifles. Objects of the invention include providing a safer design of shooting booth with improved bullet stop and retention material in its walls, a target transport system which carries the target well within the protective confine of the booth, high level of sound proofing, a robust bullet trap adequate for low and high velocity bullets and for soft lead to hard jacketed bullets, good smoke removal and ventilation, an efficient lighting pattern, and an improved target carrier. Other advantages of the invention will become apparent from the following drawings and detailed description of a preferred embodiment.




SUMMARY OF THE INVENTION




A preferred embodiment of the invention is found in a firing range having shooting booths with protective side walls constructed of armour plate, soft metal framing studs running vertically along the plate with insulating material disposed between the framing studs and against the plate, and a sheet of sound-proofing tile attached to the framing studs and covering the insulating material. The ceiling of the booth is constructed of an armour plate meeting the upper edge of the armour plates of the side walls, and a layer of sound-proofing tile between the side walls below and apart from the ceiling armour defines a space to accommodate the return end of a target transport system. The ceiling tile has a slot to allow a target carrier to extend through the slot and carry the target well within the protective confine of the booth. The ceiling tile is angled upward at the rear of the booth to facilitate lighting and ventilation.




Lighting in the booths is provided by a row of fluorescent light tubes and diffusion cover located in the ceiling of the range facility directly behind the booths, and provides an even, bright, non-glare illumination from above and behind the shooters. Ventilation air is blown through the booths from above and behind the shooters, and air is removed from the facility by take out ducts in front of the booths to direct and remove smoke from the booths without allowing it to spread into the range facility.




The bullet trap is a floor to ceiling damp sand backstop supported by a reflected angle support structure, and is enclosed within a cage of armour plating. The target carrier is a two-prong hook hanger with easily replaceable sections in the event that a bullet impact bends or severs a section.











BRIEF DESCRIPTION OF THE DRAWINGS




The drawings show a form of the invention which is presently preferred; however, the invention is not limited to the precise arrangement shown in the drawings.





FIG. 1

is a schematic depiction of the relevant portions of a shooting range according to the invention.





FIG. 2

is a schematic depiction of the shooting booths of the present invention with the ceiling armour shown in exploded relationship.





FIG. 3

is a section view of a wall of adjoining shooting booths taken along the lines E—E of FIG.


2


.





FIG. 4

is a section view of a wall of an end shooting booth taken along the lines F—F of FIG.


2


.





FIG. 5

is a schematic depicted a side section of a shooting booth according to the invention.





FIG. 6

is a front view of the target carrier taken along the lines G—G of FIG.


5


.





FIG. 7

is a side section view of the bullet trap.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

shows an indoor shooting range (


10


) having a firing area of four shooting lanes. The shooting lane are roughly defined by the four shooting booths (


12


) and the four target transport systems (


14


) which carry a target to selected distances between the shooting booths and a bullet trap (


16


). Although the depicted range has a single firing area, an indoor range facility can have several such areas isolated from each other by walls and interconnected by doors. An indoor facility developed according to this invention has three such firing areas separated by masonry block walls.




The shooting booths are shown in more detail in FIG.


2


. Each booth comprises two side walls (


18


) and a ceiling (


20


). The ceiling is formed by an armour plate (


22


) and a layer of sound-proofing tile (


34


) which extends between the side walls and is located below and apart from the ceiling armour plate to define a space (


24


) to accommodate the return end of a target transport system (


14


). The ceiling will be described in further detail below in respect to FIG.


5


.




The construction of the shooting booth walls (


18


) is best seen in the section

FIGS. 3 and 4

. Each booth wall is constructed of an armour plate (


28


), preferably 8 by 10 foot, quarter-inch thick plates of 425 abrasive armour plating. The wall plate is oriented to have its 10 foot side as wall height and the 8 foot side as wall depth. The bottom of the plate may be secured to the floor by an angle iron or other attachment. Framing studs (


30


) of soft metal, such as 1⅝ inch wide aluminum “C” channel studs for drywall installation, are run vertically along the armour plate and spaced apart from each other at regular intervals, such as twelve, sixteen or eighteen inches. A porous material (


32


) such as synthetic fiber insulation batting is disposed between the framing studs and against the armour plate. A sheet of sound-proofing tile (


34


) is attached to the framing studs and covers the porous insulating material. The tile is preferably a one-inch thick tile of Tectum® sound proofing material.




The above wall construction provides improved bullet retention and sound proofing over walls constructed of bare armour or armour covered by wood. A bullet inadvertently discharged into the wall will be stopped by the abrasive armour plate, and deflected in whole or in fragments along the plate. The deflected bullet or fragments will be slowed and retained by the batting and soft metal framing studs.




The booth's ceiling is shown in greater detail in FIG.


5


. The ceiling is constructed of an armour plate (


22


), again preferably quarter-inch thick 425 abrasive armour plating, which meets the upper edge of the armour plates (


28


) of the side walls. The joint between the wall and ceiling plates is welded to provide structural support. A layer of sound-proofing tile (


34


), again preferably one-inch Tectum®, extends between the side walls but is located below the ceiling armour plate a sufficient distance to define an open space (


24


) to accommodate the return end of a target transport system. The ceiling tile has a slot (


40


) at its front end to allow a target carrier (


42


) to extend through the slot and enable the target to be carried well within the protective confine of the booth.




The ceiling layer of sound-proof tile (


34


) is angled upward at the rear of the booth to facilitate lighting and ventilation. Lighting in the booths is provided by a row of light fixtures (


44


), preferably fluorescent light tubes with a diffusion cover, located in the ceiling of the range facility directly behind the booths, to provide an even distribution of bright, non-glare light from above and behind the shooters.




Ventilation air is introduced to the range from behind the shooting booths and is blown through the booths from above and behind the shooters. The air is removed from the facility by take-out ducts located in the shooting lanes in front of the booths. This ventilation path directs and remove smoke from the booths without allowing it to spread through the range facility.




As shown in

FIG. 6

, the target carrier (


42


) includes a carrier plate (


46


) which is attached at its top end to the target transport system and is attached at its bottom end to a two-prong target hook (


48


). The carrier plate (


46


) is the portion of the target carrier which extends through the slot (


40


) in the ceiling tile.




The two-prong target hook (


48


) is specially assembled in easily replaceable segments because the shaft and prong arms can be bent or severed by a bullet. A hollow metal cylinder (


50


) is attached to the bottom center of the carrier plate and serves as a socket to receive a hollow connecting shaft (


52


) between the carrier plate and the prong arms. The opposite (lower) end of the connecting shaft attaches to a T-fitting (


54


) made from a short segment of pipe (


56


) with a threaded UNC nut (


58


) welded to its bottom. The upper arms (


60


) of the prongs are threaded to match the UNC nut (


58


) and an upper arm (


60


) is screwed into each side of the nut. The opposite ends of the upper arms are also threaded and a UNC nut (


62


) is screwed onto each end. Lower arms (


64


) of the prongs are threaded at the upper end to be attached to the UNC nut (


62


), and are formed with a hook (


66


) at the opposite end to hold a target. The plate-to-cylinder attachment and the attachment at both ends of the connecting shaft are by holes and cotter-pin. Thus if any segment is damaged by bullet impact, it can be disconnected and replaced with having to replace the entire prong assembly.




As shown in

FIG. 7

, the bullet trap (


16


) is a floor-to-ceiling damp sand backstop to accommodate a wide variation in bullet velocity and bullet construction. The trap is enclosed within a cage of armour plating, i.e. armour ceiling plate (


70


) and armour plate (


72


,


74


) on the back wall and sidewalls. To reduce the amount of sand required and still provide a sufficiently thick mound (


76


) of sand, a reflected angle support structure (


80


) is provided by steel baffle plates welded to the back wall armour plate. Preferably there are four baffle plates. The bottom baffle (


82


) joins the back wall about one-third height from the floor and at about a 45° angle into the back wall. The second plate (


84


)is welded to the lower plate (


82


) at a right angle and is shorter than the bottom plate such that the upper edge of this intermediate plate (


84


) is about midway from floor to ceiling. The upper two baffle plates are a reflection of the lower two plates, i.e. the third plate (


86


) is essentially the same as the bottom plate (


82


), and the top plate (


88


) essentially the same as the second plate (


84


). This places the joint between the third and top plates about two-thirds distance from floor to ceiling. The support structure allows the sand mound to be piled from floor to ceiling at a relatively steep angle, eliminating the need for a ricochet eye-brow catcher.



Claims
  • 1. A moveable target transport in a shooting range including a target carrier, the carrier including a two-prong target hook comprising:a connecting shaft having an upper end connected to the target transport and a lower end connected to two prong arms, wherein the prong arms are detachable from the shaft to facilitate replacement of a prong arm damaged by a bullet.
  • 2. The target transport of claim 1 wherein each prong arm is generally L-shaped and has a substantially horizontal leg and a substantially vertical leg depending downward from the horizontal leg such that the two L-shaped prong arms generally form a U-shape, each horizontal leg being removably connected to the connecting shaft, and each vertical leg having a hook at its lower end.
  • 3. The target transport of claim 2 wherein each vertical leg has at least two detachable segments having opposing adjacent ends removably connected to each other.
  • 4. The target transport of claim 3 wherein the adjacent ends of the segments of the vertical legs threadedly engage a nut located therebetween.
  • 5. The target transport of claim 3 wherein the horizontal legs of the prong arms threadedly engage a generally horizontal nut attached to the connecting shaft.
  • 6. The target transport of claim 5 wherein the connecting shaft and the horizontal nut generally form a T-shape.
  • 7. The target transport of claim 1 wherein each prong arm is threadedly attached to the connecting shaft.
  • 8. A target carrier for a shooting range, comprising:(a) two prong arms, each having a proximal and a distal end, each distal end having a hook for engaging a target; (b) a connecting shaft having an upper end and a lower end, the upper end removably connectable to a target transport system, and the lower end removably connected to the proximal ends of the prong arms; and (c) each prong arm constructed of detachable segments to facilitate removal and replacement of a segment damaged by a bullet.
  • 9. The target carrier of claim 8 wherein each prong arm is generally L-shaped and has a substantially horizontal leg and a substantially vertical leg depending downward from the horizontal leg such that the two L-shaped prong arms generally form a U-shape, each horizontal leg being removably connected to the lower end of the connecting shaft, and each vertical leg having the hook at its lower end.
  • 10. The target carrier of claim 9 wherein each vertical leg includes at least two detachable segments having opposing adjacent ends removably connected to each other.
  • 11. The target carrier of claim 10 wherein the adjacent ends of the detachable segments threadedly engage a nut located therebetween.
  • 12. The target carrier of claim 9 wherein the horizontal legs of the prong arms threadedly engage a generally horizontal nut attached to the lower end of the connecting shaft.
  • 13. The target carrier of claim 12 wherein the connecting shaft and the horizontal nut generally form a T-shape.
  • 14. The target carrier of claim 12 further comprising a sleeve located between the connecting shaft and the horizontal nut, the sleeve fixedly attached to the horizontal nut and sleevedly engaging the connecting shaft and connected thereto by a pin located in aligned holes in the sleeve and the connecting shaft.
  • 15. The target carrier of claim 8 wherein the proximal end of each prong arm is threadedly attached to the connecting shaft.
  • 16. A target carrier for a shooting range, comprising:(a) a T-fitting that includes (1) a horizontal nut having horizontally opposing threaded ends, and (2) a tubular sleeve having one end fixedly attached to the outer periphery of the nut such that the other end of the sleeve is located above the nut; (b) a tubular connecting shaft having an upper end and a lower end, the upper end being removably connectable to a target transport system, and the lower end sleevedly engaged within the tubular sleeve and connected thereto by a pin located in aligned holes in the tubular sleeve and connecting shaft; and (c) two prong arms, each prong arm including (1) a generally L-shaped upper arm having a horizontal leg and a vertical leg depending from the horizontal leg, (2) a vertical nut having vertically opposing threaded ends, and (3) a lower arm having an upper end and a lower end, the upper end being adjacent the lower end of the vertical leg, and the lower end having an integrally-formed hook for receiving a target; wherein the horizontal legs are threadedly attached to opposite ends of the horizontal nut and the adjacent upper ends of the lower arms and lower ends of the vertical legs are threadedly connected together by the vertical nuts located therebetween.
Parent Case Info

This is a divisional of application Ser. No. 08/978,747 filed on Nov. 26, 1997 now U.S. Pat. No. 5,907,930, which is incorporated herein by reference.

US Referenced Citations (39)
Number Name Date Kind
1400066 Huck Dec 1921
2420304 Diem May 1947
2538118 Miller Jan 1951
2736528 LeBrock Feb 1956
2899204 Ratay Aug 1959
3080166 Clark Mar 1963
3305993 Nelsson Feb 1967
3333349 Brumlik Aug 1967
3404886 Dundr Oct 1968
3447806 Pfaff et al. Jun 1969
3602511 Gehmann Aug 1971
3611653 Zinn Oct 1971
3737165 Pencyla Jun 1973
4042061 Murakami Aug 1977
4164901 Everett Aug 1979
4247115 Nikoden Jan 1981
4317572 Iseli Mar 1982
4509301 Head Apr 1985
4566237 Turner Jan 1986
4567100 Pickett et al. Jan 1986
4598631 Everett Jul 1986
4683688 Wojcinski Aug 1987
4702046 Haugen et al. Oct 1987
4728109 Simonetti Mar 1988
4786059 Barini Nov 1988
4787289 Duer Nov 1988
4822657 Simpson Apr 1989
4856791 McQuade Aug 1989
4913389 McCracken Apr 1990
4919437 Salabe et al. Apr 1990
5040802 Wojcinski et al. Aug 1991
5088741 Simonetti Feb 1992
5121671 Coburn Jun 1992
5255924 Copius Oct 1993
5366105 Kerman et al. Nov 1994
5400692 Bateman Mar 1995
5456155 Myrtoglou Oct 1995
5592796 Landers Jan 1997
5907930 Ricco Jun 1999
Non-Patent Literature Citations (1)
Entry
National Rifle Association Range Department, The Range Manual Indoor Range Design Criteria, 1988 Section III-2-6(3.05) & Drawing 49A.