The present invention is directed to shooting rests for supporting firearms and, more specifically, to shooting rests having height adjustment assemblies.
Shooters often use firearm rests or supports to steady a firearm during target practice, accuracy testing, hunting, etc. Holding a firearm without a stable support may limit the shooter's ability to accurately fire the firearm. When sighting in a rifle, for example, a shooter typically wants to keep the rifle in the same position for different shots. Many shooters accordingly use a support in an attempt to reduce or eliminate human movement inherent in holding the firearm. Some supports are capable of holding the entire firearm. For example, a user can place the forestock of a rifle on a front support and the buttstock of a rifle on a rear support. Other supports may hold only one portion of the firearm. For example, a shooter may hold the buttstock and use a single support for the forestock of the rifle. To provide a desired level of stability, many conventional firearm supports are bulky devices that hold the firearm at a fixed height. Other firearm supports, however, may provide adjustability of the position of the firearm at the front and/or rear support.
The following disclosure describes several embodiments of firearm shooting rest assemblies and associated methods of use and manufacture. One embodiment of the disclosure, for example, is directed to a shooting rest for supporting a firearm having a buttstock spaced apart from a forestock. The shooting rest includes a first base portion carrying a first support for supporting the buttstock, and a second base portion coupled to the first base portion and carrying a second support for supporting the forestock. The second base portion includes a body having an opening extending therethrough, and a height adjustment member slidably positioned in the opening. The height adjustment member has a non-circular cross-sectional shape in a plane that is generally transverse to a longitudinal axis of the height adjustment member. The height adjustment member is attached to the second support and configured to adjust a height of the second support. The second base portion also includes a biasing member contacting the height adjustment member. The biasing member at least partially inhibits movement of the height adjustment member through the opening.
Another aspect of the disclosure is directed to a shooting rest assembly for use with a firearm having a buttstock spaced apart from a forestock. The shooting rest assembly includes a base having a first end portion spaced apart from a second end portion. The first end portion carries a first support and the second end portion carries a second support. The first and second supports receive the forestock and buttstock, respectively. The shooting rest assembly also includes a height adjustment member attached to the second support and slidably received in an opening of the second end portion of the base. The height adjustment member includes a first guide portion spaced apart from a second guide portion. Each of the first and second guide portions extends substantially along a length of the height adjustment member. The shooting rest assembly also includes a biasing member engaged with the height adjustment member. The biasing member exerts an adjustable frictional force against the height adjustment member to at least partially inhibit movement of the height adjustment member through the opening of the second end portion of the base.
A further aspect of the disclosure is directed to a firearm rest assembly for use with a firearm having a buttstock opposite a forestock. The firearm rest assembly includes a base having a first end portion spaced apart from a second end portion. The firearm rest assembly also includes a buttstock support and a forestock support. The first end portion of the base carries the buttstock support, which is configured to receive the firearm buttstock. The second end portion of the base carries the forestock support, which is configured to receive the firearm forestock. The firearm rest assembly further includes a height adjustment assembly coupling the forestock support to the second end portion of the base. The height adjustment assembly includes a height adjustment dial carrying a height adjustment shaft. The height adjustment assembly also includes a height adjustment support movably coupled to the second end portion of the base and attached to the forestock support. The height adjustment support includes first means for aligning the height adjustment support in the second end portion of the base, and second means for engaging the height adjustment shaft to change the elevation of the attached forestock support in response to rotation of the height adjustment dial. The height adjustment assembly also includes a sensitivity adjustment dial and third means for adjusting a sensitivity of the elevation change of the forestock support in response to rotation of the sensitivity adjustment dial.
Specific details of several embodiments of the disclosure are set forth in the following description and in
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present invention. Thus, the phrases “in one embodiment” or “in an embodiment” throughout this specification are not necessarily all referring to the same embodiment. Furthermore, particular features, structures, or characteristics of the different embodiments may be combined in any suitable manner in one or more embodiments.
The headings provided herein are for convenience only and do not interpret the scope or meaning of the claimed invention.
2. Embodiments of Shooting Rests with Adjustable Height Assemblies
According to one aspect of the illustrated embodiment, the rear support 110 includes a body 112 attached to the rear base portion 104. The body 112 has a generally V-shaped configuration and carries a non-marring member 114 that is sized to receive the rearward section of the firearm 101 to center the firearm 101 and prevent lateral movement of the firearm 101. In the illustrated embodiment, the non-marring member 114 includes multiple gripping features to secure the rearward section of the firearm 101. The non-marring member 114 can be a pliable, rubber-like material to prevent marring of the firearm 101 and provide a slip-resistant contact surface. In other embodiments, the non-marring member 114 can be made from other materials, including, for example, leather. Moreover, in still further embodiments, the body 112 or non-marring member 114 can have other shapes or configurations suitable for supporting the rearward section of a firearm 101. For example, the combination of the body 112 and the non-marring member 114 can form a generally planar surface, a curved surface, etc. As described in more detail below with reference to
The illustrated front support 130 includes a rest assembly 132 carried by a front elevation assembly 150 that is configured to adjust the height of the forward section of the firearm 101. The rest assembly 132 can include features and components that are generally similar to the rest and support assemblies described in U.S. Patent Application Publication No. US2008/0047189, entitled “Adjustable Shooting Rests and Shooting Rest Assemblies,” filed Aug. 22, 2007 (patent application Ser. No. 11/843,641, Attorney Docket No. 43010.8025.US01), which is incorporated herein in its entirety by reference. For example, the illustrated rest assembly 132 includes a base 134 carrying a support member 136 having a generally U-shaped configuration that is sized to receive the forward section of the firearm 101. In certain embodiments, the base 134 is configured to removably receive the illustrated support member 136 as well as other support members of different sizes or configurations. The base 134 also includes a lateral adjustment member 138 that is configured to adjust a side-to-side position of the support member 136 with reference to the front base portion 106.
In the illustrated embodiment, the base 102 also includes extensions or arm members 140 (identified individually as a first arm member 140a and a second arm member 140b) extending laterally from the front base portion 106. Each arm member 140 stabilizes the assembly 100 and also carries an adjustable front foot 142 (identified individually as a first front foot 142a and a second front foot 142b). Each front foot 142 is independently adjustable to change the elevation of the corresponding arm member 140. For example, each front foot 142 can be adjusted to accommodate uneven or rough terrain.
According to another feature of the illustrated embodiment, the front support 130 includes a front elevation assembly 150 that is configured to adjust the height or elevation of the front support 130. According to several features of the front elevation assembly 150, and as described in detail below with reference to
In addition to the height adjustment member 252, the adjustable front foot 142a is also capable of changing the elevation of the front support 130 (
The embodiment illustrated in
The height adjustment member 252 also includes a planar portion or groove 358 positioned between two spaced-apart flat gear portions or gear racks 356 (identified individually as a first rack 356a and a second rack 356b). The racks 356 are configured to engage corresponding spaced-apart pinion gears 366 (identified individually as a first pinion gear 366a and a second pinion gear 366b) that are driven by the height adjustment dial 260. More specifically, a height adjustment pin or shaft 362 extends from the height adjustment dial 260 and carries a sleeve 364 including the pinion gears 366. When a user rotates the height adjustment dial 260, the pinion gears 366 engage the corresponding racks 356 to move the height adjustment member 252 by a rack and pinion gear-type configuration. In this manner, the height adjustment dial 260 moves the height adjustment member 252 through the opening 308 in the front base portion 106. Although the illustrated embodiment includes two pinion gears 366 and two corresponding racks 356 on the height adjustment member 252, in other embodiments the front elevation assembly 150 can include a single pinion gear and corresponding rack. Moreover, in still further embodiments, the pinion gears 366 can be formed directly in the height adjustment shaft 362, without the sleeve 364.
The rack and pinion gear connection between the height adjustment dial 260 and the height adjustment member 252 provides for rapid adjustment of the front support 130 (
The front elevation assembly 150 also includes a biasing member 376 that is operably coupled to the sensitivity adjustment dial 270 to allow a user to adjust the sensitivity of the change of height of the front elevation assembly 150. More specifically, the biasing member 376 is captured on an end portion 373 of a sensitivity adjustment pin or shaft 372. The sensitivity adjustment shaft 372 positions the biasing member 376 proximate to the groove 358 in the height adjustment member 252 (
In operation, a user can rotate the sensitivity adjustment dial 270 to adjust a sensitivity of the front elevation assembly 150. More specifically, when a user rotates the sensitivity adjustment dial 270, the sensitivity adjustment shaft 372 rotates through the positioning member 374 to move the biasing member 376 toward or away from the height adjustment member 252. When the sensitivity adjustment shaft 372 moves the biasing member 376 toward the height adjustment member 252, the legs 377 frictionally engage the height adjustment member 252 in the groove 358 to exert a force against the height adjustment member 252. The magnitude of the force exerted by the biasing member 376 against the height adjustment member 252 corresponds to how close the biasing member 376 is positioned next to the height adjustment member 252. In this manner, the front elevation assembly 150 is configured to provide an infinitely variable sensitivity adjustment for a user. The biasing member 376 also helps to at least partially retain the height adjustment member 252 in place after a user sets the biasing member 376 to a desired position because the biasing member 376 can exert a constant contact or frictional force against the height adjustment member 252.
In addition to adjusting the position of the biasing member 376 relative to the height adjustment member 252 to change the sensitivity of the front elevation assembly 150, the end portion 373 of the sensitivity adjustment shaft 372 can also contact the height adjustment member 252 to lock out the front elevation assembly 150. More specifically, a user can rotate the sensitivity adjustment dial 270 to deflect the legs 377 of the biasing member 376 until the end portion 373 of the sensitivity adjustment shaft 372 engages the height adjustment member 252. In this manner, the sensitivity adjustment shaft 372 can contact the height adjustment member 252 to lock or retain the height adjustment member 252 at a desired elevational position.
A further benefit of the illustrated embodiment is that the biasing member 376 can reduce or remove unwanted movement or slack between the height adjustment member 252 and the front base portion 106. For example, the stacked manufacturing tolerances of the height adjustment member 252, the opening 308 in the front base portion 106, the racks 356, the pinion gears 366, etc. may cause the height adjustment member 252 to move or wobble during use. This movement may be undesirable for certain shooting conditions, such as target shooting or sighting in a rifle. The biasing member 376 can at least partially eliminate this unwanted movement, however, by exerting a constant force against the height adjustment member 252 to steady the height adjustment member 252 in the opening 308 in the front base portion 106. Moreover, in certain embodiments, the non-vertical angle of the height adjustment member 252, in combination with the biasing member 376, can also help to remove unwanted movement or wobble from the front elevation assembly 150. For example, the non-vertical angle allows the height adjustment member 252 to rest and slide against the front base portion 106 as the height adjustment member 252 moves through the opening 308.
According to yet another feature of the illustrated embodiment, the height adjustment dial 260 and the sensitivity adjustment dial 270 are each easily accessible to a user. For example, the height adjustment dial 260 extends laterally from the front base portion 106 to allow a user to easily reach and rotate the height adjustment dial 260. Moreover, the front base portion 106 includes a recess 307 proximate to the sensitivity adjustment dial 270 to provide clearance for a user's fingers to rotate the sensitivity adjustment dial 270.
The embodiments shown in
According to another feature of the illustrated embodiment, the assembly 100 also includes attachment members or bars 390 (identified individually as a first attachment bar 390a and a second attachment bar 390b) that releasably secure the rear base portion 104 to the front base portion 106. In the exploded view of
As noted above, the illustrated height adjustment member 252 also has a non-circular cross-sectional shape in a plane that is generally transverse to a longitudinal axis of the height adjustment member 252. More specifically, the height adjustment member 252 has a cross-sectional shape that forms a generally M-shaped outer periphery of the height adjustment member 252. For example, the guide or alignment protrusions 354 extend from a distal side of the height adjustment member 252 to help guide the height adjustment member 252 through the front base portion 106. In other embodiments, however, and as described below, the height adjustment member 252 can include other non-circular shapes or configurations, including, for example, a single alignment protrusion. The alignment protrusions 354 of the illustrated embodiment provide the benefit of guiding or aligning the height adjustment member 252 in the opening 308 in the front base portion 106 without the use of any other alignment features or members extending from the front base portion 106.
According to another feature of the illustrated embodiment, the height adjustment member 252 includes a plurality of cavities 457 (identified individually as a first cavity 457a and a second cavity 457b shown in
As noted above, the flat gears or racks 356 (
Moreover, the pitch of the teeth in each rack 356 can be configured, along with the corresponding pinion gear 366, to provide a predetermined length of elevational adjustment per rotation of the height adjustment dial 260 (
According to another feature of the illustrated embodiment, the first height adjustment member 552a also includes lateral alignment protrusions 551 (identified individually as a first lateral alignment protrusion 551a and a second lateral alignment protrusion 551b) extending from the sides of the first height adjustment member 552a. Similar to the alignment protrusions 554, the lateral alignment protrusions 551 can extend along the length of the first height adjustment member 552a to orient and align the first height adjustment member 552a. For example, an opening that receives the first height adjustment member 552a (see, e.g., opening 308 in
The lateral alignment protrusions 551 illustrated in
According to another aspect of the illustrated embodiment, the rear base portion 104 includes a plurality of first slots 694a that are spaced apart from each other and configured to receive the corresponding first fasteners 392a carried by the attachment bars 390. The front base portion 106 also includes a plurality of second slots 694b that are spaced apart from each other and configured to receive the corresponding second fasteners 392b. In this manner, the attachment bars 390 can secure the rear base portion 104 to the front base portion 106. More specifically, the attachment bars 390 can be positioned inside the underside 611 so that the first slots 694a receive the first fasteners 392a, and the second slots 694b receive the second fasteners 392b. In certain embodiments, a user can tighten the first fasteners 392a and the second fasteners 392b to fasten the base portions together. In other embodiments, however, the attachment bars 390 and corresponding first and second fasteners 392a, 392b can slide in and out of the first slots 694a and second slots 694b.
From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications can be made without deviating from the spirit and scope of the disclosure. For example, the elevation assemblies described herein may have other configurations or include other suitable elevation assembly mechanisms (e.g., multiple height adjustment members, height adjustment members having different shapes, etc.). In addition, a single front support that is not coupled to a rear support can include a height adjustment assembly with sensitivity adjustments, or a rear support can include a height adjustment assembly with sensitivity adjustments as described herein. Moreover, specific elements of any of the foregoing embodiments can be combined or substituted for elements in other embodiments. Furthermore, while advantages associated with certain embodiments of the disclosure have been described in the context of these embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, embodiments of the disclosure are not limited except as by the appended claims.
The present application is a continuation of U.S. application Ser. No. 12/276,229, filed Nov. 21, 2008, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12276229 | Nov 2008 | US |
Child | 13183212 | US |