The present invention relates, in general, to the field of power generation and industrial boiler design, including boilers, steam generators and heat exchangers used in the production of steam, such as those used to generate electricity or those used for industrial steam applications and, more particularly, to a shop-assembled solar receiver heat exchanger having an integral support structure.
A solar receiver is a primary component of a solar energy generation system whereby sunlight is used as a heat source for the production of high quality steam that is used to turn a turbine generator, and ultimately generate electricity. The receiver is permanently positioned on top of an elevated support tower that is strategically positioned in a field of heliostats, or mirrors, that collect rays of sunlight and reflect those rays back to target wall(s) in the receiver. An efficient, compact solar receiver for such systems which is simple in design, rugged in construction and economical to manufacture would be welcomed by the industry.
One aspect of the present invention is drawn to a shop-assembled solar receiver heat exchanger for transferring heat energy from the sun into a working fluid, such as water. The heat exchanger is used to transform at least a portion of the water from the liquid phase into saturated or superheated steam.
In particular, one aspect of the present invention is drawn to a shop-assembled solar receiver heat exchanger comprising: an arrangement of heat transfer surfaces, a vertical steam/water separator structurally and fluidically interconnected thereto; and a vertical support structure top supporting the vertical steam/water separator and the heat transfer surfaces.
The shop-assembled solar receiver heat exchanger is placed on top of a tower and uses the energy of the sun to heat the working fluid. A heliostat field of mirrors located on the ground automatically tracks the sun, and reflects and concentrates light energy to the shop-assembled solar receiver heat exchanger. The incident solar insolation heats the working fluid, typically water, to produce saturated or superheated steam which can be provided to a steam turbine to generate electricity.
A vertical steam/water separating device, disclosed in the aforementioned U.S. Pat. No. 6,336,429 to Wiener et al., is used to separate the steam from the steam-water mixture. The vertical steam/water separator is structurally and fluidically interconnected with the heating surfaces of the shop-assembled solar receiver heat exchanger as part of a shop-assembled design as described herein.
The vertical support structure is bottom supported from a base which is connected to the tower. Buckstays are provided on the vertical support structure to provide lateral support for the arrangement of heat transfer surfaces, which advantageously comprise loose tangent tube panels, while allowing for unrestrained thermal expansion of the tube panels in both the horizontal and vertical directions, thereby eliminating additional tube stresses.
The vertical support structure and the base, buckstays and other structural members not only provide structural support and rigidity for the shop-assembled solar receiver heat exchanger, but also a means by which the heat exchanger can be picked up and lifted for placement at a desired location. The structure permits the entire assembly of the heat exchanger, vertical steam/water separator and tangent tube panels of heating surface to be shop-assembled, transported, and then lifted and set upon a tower as a unit during installation. The vertical support structure remains with the solar receiver heat exchanger, thereby facilitating (if necessary) the removal of the solar receiver heat exchanger from the tower should it become desirable to do so.
The shop-assembled solar receiver heat exchanger according to the present invention is advantageously comprised of an arrangement of heat transfer surfaces and fluid conveying conduits arranged in a particular fashion to transfer a desired amount of heat energy into the water. The heat transfer surfaces are advantageously made of tubes arranged into tangent tube panels, and are provided with inlet and outlet headers as required. As is known to those skilled in the art, heat transfer surfaces which convey steam-water mixtures are commonly referred to as evaporative or boiler surfaces; heat transfer surfaces which convey steam therethrough are commonly referred to as superheating (or reheating, depending upon the associated steam turbine configuration) surfaces. Regardless of the type of heating surface, the sizes of tubes, their material, diameter, wall thickness, number and arrangement are based upon temperature and pressure for service, according to applicable boiler design codes, such as the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section I, or equivalent other codes as required by law. Required heat transfer characteristics, pressure drop, circulation ratios, spot absorption rates, mass flow rates of the working fluid within the tubes, etc. are also important parameters which must be considered. Depending upon the geographic location where the heat exchanger is to be installed, applicable seismic loads and design codes are also considered.
In another aspect of the invention, shop-assembly, transport and field erection are facilitated by a fabrication/transport/lifting fixture which facilitates fabrication, assembly, transportation and erection of the heat exchanger from manufacture in the shop to installation in the field. The fixture supports two trunnion shafts attached to the vertical support structure of the solar receiver. Lifting lugs are located on the top end of the support structure. Upon arrival at the installation site in the field, a crane lifts the heat exchanger receiver to vertical, pivoting on the trunnion shafts, and then lifts the solar receiver heat exchanger for placement at a desired location.
More particularly, another aspect of the present invention is drawn to a fixture for facilitating fabrication, assembly, transportation and erection of a shop-assembled solar receiver heat exchanger, comprising: a base; and stanchions provided at one end of the base for engaging trunnion shafts on the shop-assembled solar receiver heat exchanger, the stanchions permitting rotation of the shop-assembled solar receiver heat exchanger about the trunnion shafts on the stanchions from a shipping position to a substantially vertical position during a portion of the field erection process of the shop-assembled solar receiver heat exchanger.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming part of this disclosure. These and other features of the present invention will be better understood and its advantages will be more readily appreciated from the following description, especially when read with reference to the accompanying sheets of drawings. Thus, for a better understanding of the present invention, and the operating advantages attained by its use, reference is made to the accompanying drawings and descriptive matter, forming a part of this disclosure, in which a preferred embodiment of the invention is illustrated.
Reference will hereinafter be made to the accompanying sheets of drawings wherein like reference numerals designate the same or functionally similar elements throughout the several drawings.
The present invention employs a vertical steam/water separating device according to the teachings of U.S. Pat. No. 6,336,429 to Wiener et al. to separate the steam from the steam-water mixture produced by the shop-assembled solar receiver heat exchanger of the present invention. The text of the aforementioned U.S. Pat. No. 6,336,429 to Wiener et al., is hereby incorporated by reference as though fully set forth herein. The vertical steam/water separator is structurally and fluidically interconnected with the heating surfaces of the shop-assembled solar receiver heat exchanger as part of a shop-assembled design as described herein.
To the extent that explanations of certain terminology or principles of the heat exchanger, boiler and/or steam generator arts may be necessary to understand the present invention, the reader is referred to Steam/its generation and use, 40th Edition, Stultz and Kitto, Eds., Copyright ©1992, The Babcock & Wilcox Company, and to Steam/its generation and use, 41st Edition, Kitto and Stultz, Eds., Copyright ©2005, The Babcock & Wilcox Company, the texts of which are hereby incorporated by reference as though fully set forth herein.
Referring to
Evaporator or boiler tube panels 12;
Primary superheater (PSH) and secondary superheater (SSH) tube panels 14;
A vertical steam/water separator 16;
Vertical, internal support structure 18, buckstays 20 and tower connection 22;
Supplies 24, risers 26 and saturated connection piping 28;
Spray water attemperator 30 and piping 32;
Header heat shields 34;
Light barrier 36 and insulation 38;
Instrumentation 40; and
Platforms 42 and access ladders.
More particularly, and referring generally to
Each side of the shop-assembled solar receiver heat exchanger 10 comprises one evaporator tube panel 12 and one superheater panel 14. Two primary superheater (PSH) panels 14 form one corner of the receiver 10 and two secondary superheater (SSH) panels 14 form an opposite corner (not shown). The evaporator 12 and superheater 14 panels are constructed of closely spaced tangent loose tubes (no membrane) with tube bends near the headers for additional flexibility. The tubes are small diameter thin wall tubes to minimize hot to cold face tube temperature differentials. The tube attachments allow for unrestrained thermal expansion of the tube panels in both the horizontal and vertical directions, thereby eliminating additional tube stresses. These design features maximize flexibility and minimize thermal stresses and the potential for tube bowing. While the above-described arrangement of evaporator tube panels 12 and superheater tube panels 14 is one preferred embodiment, other arrangements are within the scope of the present invention. For example, the evaporator 12 and superheater 14 panels may not be placed on every side, or the superheater panels 14 may not meet at a corner, or there may even be different configurations of plural evaporative 12 and superheater panels 14 provided on a given side.
The solar receiver heat exchanger 10 is top supported from the internal vertical support structure 18. The vertical support structure 18 is bolted to a tower flange (not shown) via a transition section 22 integral to the base structure of the solar receiver 10. There are three elevations of buckstays 20 to transmit wind and seismic loads from the panels 12, 14 into the support structure 18. The beams of the buckstays 20 are fixed to the columns of the vertical, internal support structure 18.
The receiver 10 is designed for natural circulation and does not require a circulating pump. Feedwater enters the vertical separator 16 near mid height of the receiver 10. The sub-cooled water flows down through the downcomer pipe 17 at the bottom of the vertical separator. Supply pipes 24 carry the water to the lower headers of the evaporator panels 12. The heat from the mirror field is absorbed by the water flowing upward though the tubes in the panels 12 which is lower in density than the water leaving the vertical separator 16 resulting in a natural pumping action. The water-steam mixture exits the headers at the top of the evaporator panels 12. Risers 26 carry the water-steam mixture to the vertical separator 16. The inlet nozzles of the riser connections 27 on the vertical separator 16 are arranged tangentially and slope downward to impart a downward spin to initiate moisture removal. Wet steam flows upward through a perforated plate, scrubber and dry pan for final moisture removal. The water removed flows down and mixes with the water inventory in the vertical separator 16 for recirculation. While the supply pipes 24 and the risers 26 are illustrated in the FIGS. as being relatively straight fluid paths, it will be appreciated by those skilled in the art that their actual design in terms of arrangement and length will be determined by the degree of flexibility required to accommodate expected motions caused by thermal expansion and contraction during operation of the solar receiver heat exchanger. It is thus likely that additional bends or length may be necessary to provide such flexibility.
Dry saturated steam leaves the top of the vertical separator 16 and flows through the saturated connections 28 to the PSH 14 inlet headers located at the top of the panels 14. Both PSH panels 14 have one or more (in one embodiment, five) steam passes with plural (in one embodiment, nine (9)) tubes per pass with diaphragm headers 58 of a special design due to the fact that the panels are comprised of closely spaced tangent tubes (see
The upper and lower headers and tube bends on the evaporator 12 and PSH, SSH panels 14 are protected from spillage and stray light energy by heat shields 34 that extend around the perimeter of the receiver 10 as shown. Advantageously, the heat shields 34 comprise stiffened steel plate that is supported by the receiver structure 18. The exposed side is painted white to reduce operating temperatures. The back side is not insulated to reduce operating temperatures. There is also gap between the heat shield 34 and tubes forming the panels 12, 14 to allow natural air flow for additional cooling.
The back of the panels 12, 14 will require a light barrier 36 to protect the insulation 38 and structure from rain and heat exposure that may get through gaps between the loose tangent tubes. Advantageously, the barrier 36 may comprise an array of metal sheets supported by the tube attachment structure. The barrier 36 may be painted white on the tube side to maximize reflectance and reduce operating temperatures. The barrier 36 will also support the panel insulation 38 and associated lagging.
The heat exchanger 10 will include instrumentation 40 to measure tube hot face and fluid temperatures, heat flux on panels and possibly strain, deflection and thermal expansion of various components of the receiver, if desired. In all the FIGURES, the location of this instrumentation 40 is merely schematically indicated, rather than specifically drawn and called out.
Two platforms 42 are provided to access the upper and lower manways or access doors on the vertical steam/water separator 16, which are accessible by ladders.
Although the heat exchanger receiver 10 is fully drainable, daily draining may not be economical or desired, hence heat tracing, insulating cover or some other means may be required for freeze protection, particularly for the tube panels 12 which are exposed.
The vertical steam/water separator 16 is of the type disclosed in the aforementioned U.S. Pat. No. 6,336,429 to Wiener et al., and operates in known fashion to separate the steam from the steam-water mixture. The vertical steam/water separator 16 of this type is particularly suited to handle large transient swings in heat input to the heat exchanger 10 which may, in turn, cause large variations in water levels within the steam/water separator 16. The water separated from the steam-water mixture is conveyed to a lower portion of the separator 16, mixed with make-up feedwater, and conveyed to the evaporative surface 12 to start the process over again.
The vertical steam/water separator 16 was chosen over a traditional horizontal steam drum for the following reasons: 1) it fits well into the receiver interior; 2) it eliminates the possibility of drum humping; 3) steam separating surface area could be achieved with the vertical separator; and 4) if desired, the vertical separator can be used to support the heat exchanger heating surface tube panels and can alternatively be bottom supported.
There are other advantages to the use of the vertical steam/water separator 16 in the solar receiver heat exchanger 10 according to the present invention, instead of a traditional horizontal steam drum, particularly during shut down conditions. These advantages arise from a combination of the structure of the separator 16 and connections thereto, as well as the physical relationship of the locations of these connections and the elevations of the upper headers of the evaporator panels 12. Referring to
The solar receiver heat exchanger 10 must be capable of fast startups and load raising following cloud passes to maximize available heat usage and operation at full load and minimize off pointing of mirrors. A traditional steam drum is susceptible to drum humping (described below) if the load is increased or decreased too fast. If a cloud passes and decreases heat to the receiver with the turbine throttle valve wide open, drum pressure will drop due to the drop in steam production. This will superheat the steam in the drum causing the top half of the drum to be at a higher metal temperature than the bottom half which in turn causes the drum to distort or hump upward. The opposite happens on a rapid load increase because the steam condenses and cools the top half of the drum. Over time, this could lead to fatigue damage to the steam drum.
The inside diameter of the vertical steam/water separator vessel 16 is selected to provide enough surface area for the steam separating equipment and enough water inventory to allow the boiler to operate at peak steam flow for several minutes (about 1-½ minutes) in the event of a feedwater trip, even if the water level within the vessel was at the low water level (LWL) line when the trip occurs.
The steam separating equipment within the vessel 16 comprises a perforated plate, scrubber and dry pan which are located near the top of the vertical separator 16 as shown. The purpose of these components is to remove any additional moisture from the steam before it exits the vessel 16. This, in turn, reduces the possibility of solids carryover into the superheater 14 which could plate out inside the tubes and cause hot spots.
The feedwater connection to the vertical steam/water separator has a thermal sleeve. This nozzle is angled down so that feedwater does not impinge and thermally shock the vessel 16 if the water is below the low water level.
The upper and lower manways or access doors (see
The shop-assembled solar receiver heat exchanger 10 is designed to operate without a circulation pump and with natural circulation characteristics. This means that circuits receiving more heat input have more steam/water flow and circuits receiving less heat input will have less flow. Although not preferred, if desired in order to facilitate the circulation of the water and water-steam mixture throughout the heat exchanger 10, one or more circulation pumps may advantageously be provided at the lower portion of the separator 16 in the downcomer pipe 17 for pumping the water back to the evaporative surface to provide for assisted circulation or pumped circulation operation.
The solar receiver heat exchanger panels 12, 14 are designed for high reliability to achieve a long life under highly cyclic operating conditions and be capable of withstanding daily startups, shutdowns and cloud transients without suffering low cycle fatigue damage. The evaporative 12 and superheater 14 heat transfer surfaces are comprised of loose tangent tube panels; that is, the tubes are closely spaced to one another and are not welded together. During operation, each tube in the panels wants to thermally expand to a different length than other tubes due to temperature differences between the tubes, but the lower headers will approximately move down based on the average tube temperature and remain horizontal and, because it is much stiffer than the tubes, it will not bend. This will impart stresses in the tubes, particularly in the superheater, because each pass operates at a different average temperature. The tube bends at the inlet and outlet headers therefore provide a spring, so to speak, to reduce tube stresses near the header connections and reduce the potential for tube bowing. Top supporting the panels provides free downward thermal expansion. The tubes are small diameter with thin wall to minimize hot to cold face temperature differentials, thermal stresses and the potential for bowing; in one embodiment, the evaporator 12 and superheater 14 panels are made of 31/32″ OD×0.095″ MW tubes of SA210A1 and SA213T22 material, respectively. Other tube materials and thicknesses may be employed, depending upon temperature, pressure and other considerations.
The evaporative heating surface 12 panels are provided with lower inlet headers and upper outlet headers. This facilitates the natural circulation design of the solar receiver heat exchanger 10. The steam-water mixture generated in tubes forming the evaporative heating surface 12 panels is collected in the upper outlet headers which also serve as a mix point to even out temperature imbalances which may exist in the steam-water mixture. Stubs on the outlet headers are interconnected via risers 26 to stubs or riser connections 27 on the upper portion of the vertical steam/water separator 16. The vertical steam/water separator 16 operates in known fashion (see U.S. Pat. No. 6,336,429 to Wiener et al.), separating the steam from the steam-water mixture.
If the heat exchanger 10 is designed simply for saturated steam production, without superheat, all the panels would be evaporative surface 12, and saturated steam outlet connections 28 from the top portion of the separator 16 would convey the steam to its downstream location and use.
Depending upon the initial steam temperature and pressure, and the desired outlet superheated steam temperature, the panels comprising the superheater surfaces 14 may be multiple-pass superheater in order to provide adequate mass flow rates within the superheater surface tubes, and such concepts are within the scope of the present invention. Such multiple pass designs take into account the temperatures of not only the tubes in the superheater 14, but also the temperature of the tubes in an adjacent structure or evaporator panel 12, in order to address differential thermal expansion concerns. Further, throughout the present specification, the reference to superheater 14 may refer, depending upon the context, to either or both of primary superheater (upstream of a stage of spray attemperation for steam temperature control) and secondary superheater (downstream of a stage of spray attemperation for steam temperature control).
There are three elevations of buckstays 20 to transmit wind, seismic, shipping, and thermal expansion, etc. loads from the panels 12, 14 into the support structure 18 as shown. The buckstay 20 beams are attached to the columns of the internal support structure 18 and are at staggered elevations to allow the buckstays to extend into the corners. The buckstays are also outside the panel insulation, and is thus referred to as a “cold” buckstay design. A tie bar 31 is held against the evaporator panels 12 with scallop bar 23 and pins 33 and, for the superheater panels 14, with tube clips 29 as shown in
To reduce cost and improve panel rigidity for shipment, the evaporator tubes 12 are attached with scallop bars 23, tie bar 31 and pins 33 at each buckstay elevation 20 as shown. Three sets of scallop bars 23 are implemented across the width of the panel 12 instead of tying all of the tubes together with one bar to reduce stress in the tube attachment weld, particularly between buckstay elevations 20 where the tubes are straight (no bends to reduce stress due to differential thermal expansion).
A more flexible tube attachment design is provided for the superheater panels 14; i.e., a separate buckstay system is provided for the evaporator 12 versus the superheater 14 panels. The superheater tubes are attached with a tube clip 29 and tie bar 35 arrangement as shown. This will allow each tube to expand independently since the potential for tube to tube temperature differentials is greater in the superheater 14 compared to the evaporator 12, particularly for adjacent tubes of different passes.
The panels were also designed to minimize the number of designs to reduce cost. With regard to tube bending geometry, there are only two designs or configurations, one for the evaporator 12 and one for the superheater 14 with the only difference being which side the tube attachments are on. This is illustrated in
The solar receiver heat exchanger 10 is top supported by the internal support structure shown in
Referring to
The saturated connections and saturated connection piping 28 deliver dry saturated steam from the top of the vertical steam/water separator to the PSH inlet headers located at the top of the panels 14. Due to the narrow inlet headers, only two saturated connecting pipes are required, one per header as shown. This piping is made of carbon steel and uses standard pipe sizes and schedule thicknesses. All piping is insulated and lagged to reduce heat loss.
The shop-assembled solar receiver heat exchanger 10 has one stage of spray attemperation and piping 32 for steam temperature control, located between the PSH and SSH, as shown in
The upper and lower headers and tube bends for the panels must be protected from light spillage and stray light energy. This is accomplished with heat shields 34 that extend around the perimeter of the solar receiver 10, and as shown on
A panel barrier 36 is required on the back of the panels 12, 14 to protect the insulation and structure from rain and heat exposure that may get through gaps between the loose tangent tubes. See
Instrumentation 40 to measure tube hot face temperatures, fluid temperatures and heat flux on the panels would likely be provided. Additional instrumentation such as strain gages and trams to measure deflections and thermal expansion of various components may also be provided. SH steam temperatures will be measured via pad welded thermocouples located on the cold (insulated) side of the tube outlet legs near the headers.
As shown in
Referring to
To address these issues, in this embodiment partially circumferentially welded tube lugs 60 are employed on each tube of a panel 12 or 14, and wherein each lug 60 is located on adjacent tubes at offset elevations with clearances to accommodate for both manufacturing considerations and expected tube-to-tube temperature differentials (a significant concern when considering superheat 14 tube panels). As shown in
Two interconnecting plates 68 per supported tube panel are connected via pins 70 and rotating link bars 72 to a link bar support lug 74 attached to a flexural support member 76, via structural steel 78 to the columns comprising the vertical support structure 18 (
As best illustrated in
1. The collector beam assembly offers a convenient shelf on which to locate a light barrier, insulation, and lagging.
2. The collector beam assembly reduces costs and facilitates shop manufacture. Manufacturing and assembling the tube lugs 60, pins 62, collector beams 64, and interconnecting plates 68 yields a convenient fixture that assists in the manufacturing process. The fixture is temporarily affixed to a tube panel assembly at the appropriate elevation and the individual tube lugs 60 are tack welded in place. Upon removal of the fixture the tube lug 60 welding process is finalized providing a fitted tube panel to collector beam assembly.
The pin 70 and link bar 72 system supports field replacement. The tube panels can be completely detached from the vertical support structure (when considering a single tube panel) by removing the relevant header/piping connections, disconnecting two header vertical support rods, and disconnecting the two pins 70 more proximal to the support structure at each tangent tube support elevation. As they presumably reside outside of the light barrier, insulation, and lagging the proposed invention offers a convenient method to remove tube panels for field replacement.
The element of this embodiment that remains regardless of the aforementioned design is the partially circumferentially welded tube lug 60 design located on offset elevations that each provides two pinned 62 support locations allowing (n+1) intermediately located pins to support a n tangent tube panel.
The collector beam assembly could be comprised of different structural shapes, if desired. For example, instead of the pair of long rectangular bars forming each of the collector beams 64, which may flex or bow with gravity, the collector beams 64 could be comprised of 90 degree angles which are stiffer. The apertures 66 provided through one of the legs of each angle are then more likely to be aligned with the apertures in the lugs 60, facilitating installation of the pins 62. The other legs of the angles would be oriented towards the vertical support 18. Alternatively, a single structural T shape, where the stem of the T is located between the offset tube lugs 60 and the apertures 66 for receiving the pins 62 are provided therein, and the bar of the T is oriented towards the vertical support 18, may be employed.
The cantilevered hollow structural shape (HSS) bumper 84 and HSS flexural support member 76, as illustrated in the FIGURES, could be similarly accomplished utilizing W or other structural shapes. This would allow more typical attachments to structural steel and should more readily allow the tangent tube support system's flexural support member 76 to serve additional purposes in the structural steel. The various components can be fabricated from carbon steel, or other materials such as stainless steel or other alloy steels.
It will also be appreciated that while the tangent tube support system described above has particular applicability to a solar receiver heat exchanger, it is not limited to that setting and this system can be employed in any heat exchanger where differential and average thermal expansion of loose tangent tube panels must be accommodated for while providing adequate support for all anticipated loading conditions.
It will thus be appreciated that the present invention provides a thermally and cost-effective solar receiver heat exchanger design having the following properties. The design is low cost, and capable of being shop-assembled in a mass-production environment. Its size permits truck shipment within normal limits for truck shipment (truck width <13 ft, overall height <12′6″, overall length <35 ft.). The relatively low weight reduces shipping and erection costs. The solar receiver heat exchanger is designed for high reliability and long life while operating under highly cyclic operating conditions, and is capable of withstanding daily startups, shutdowns and cloud transients without suffering low cycle fatigue damage. The vertical steam/water separator is capable of fast startups and load raising following cloud passes to maximize available heat usage and full load operation. The natural steam/water circulation design is fully drainable and eliminates the need for a costly circulating pump, while meeting required steam capacity and performance.
Although the present invention has been described above with reference to particular means, materials, and embodiments, it is to be understood that this invention may be varied in many ways without departing from the spirit and scope thereof. For example, the solar receiver heat exchanger may be scaled to a larger size, depending upon the amount of steam flow desired; however, particular shipping or transport limitations may have to be considered in order to take advantage of shop assembly to the maximum extent. Therefore, the present invention is not limited to these disclosed particulars but extends instead to all equivalents within the scope of the following claims.
The present invention claims priority from U.S. Provisional Application for Patent Ser. No. 61/197,169, filed Oct. 24, 2008, the text of which is hereby incorporated by reference as though fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
2352717 | Karlsson | Jul 1944 | A |
2675895 | Loewenstein | Apr 1954 | A |
3030937 | Ernest | Apr 1962 | A |
3708024 | Back | Jan 1973 | A |
4089325 | Brola | May 1978 | A |
4245618 | Wiener | Jan 1981 | A |
4263893 | Pavlak et al. | Apr 1981 | A |
4290389 | Palchik | Sep 1981 | A |
4485803 | Wiener | Dec 1984 | A |
4512336 | Wiener | Apr 1985 | A |
4524727 | Ammann | Jun 1985 | A |
4539939 | Johnson | Sep 1985 | A |
4576120 | Ammann | Mar 1986 | A |
4621681 | Grover | Nov 1986 | A |
4688628 | Moldenhauer | Aug 1987 | A |
4895204 | Johnson et al. | Jan 1990 | A |
4940025 | Ott et al. | Jul 1990 | A |
5056468 | Wittchow et al. | Oct 1991 | A |
5329995 | Dey et al. | Jul 1994 | A |
5339891 | Kidaloski et al. | Aug 1994 | A |
5482233 | Marko et al. | Jan 1996 | A |
5626103 | Haws et al. | May 1997 | A |
5685151 | Ross | Nov 1997 | A |
5944089 | Roland | Aug 1999 | A |
6092591 | McDonald et al. | Jul 2000 | A |
6273182 | Pautler et al. | Aug 2001 | B1 |
6336429 | Wiener et al. | Jan 2002 | B1 |
7011086 | Litwin | Mar 2006 | B2 |
7520249 | Morin et al. | Apr 2009 | B2 |
20010023665 | Heidrich | Sep 2001 | A1 |
20030010478 | Colic et al. | Jan 2003 | A1 |
20040025466 | Hink et al. | Feb 2004 | A1 |
20050063795 | Jagos et al. | Mar 2005 | A1 |
20050252161 | Hovey, Jr. | Nov 2005 | A1 |
20060175040 | Waseda et al. | Aug 2006 | A1 |
20060243223 | Retting et al. | Nov 2006 | A1 |
20070074860 | Shinhama | Apr 2007 | A1 |
20070278169 | Grainger | Dec 2007 | A1 |
20070283906 | Albrecht | Dec 2007 | A1 |
20090178779 | White et al. | Jul 2009 | A1 |
20100101564 | Iannacchione et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
201066242 | May 2008 | CN |
0025975 | Jan 1981 | EP |
423711 | Feb 1935 | GB |
474650 | Nov 1937 | GB |
Entry |
---|
Notice of the First Office Action from the State Intellectual Property Office of the People's Republic of China dated Jul. 3, 2012. |
Office Action (Rejection) from the Egyptian Patent Office received May 7, 2012. |
Examination Report from New Zealand Intellectual Property Office dated Apr. 27, 2012. |
Technical Paper, Water/steam receivers for solar repowering, by M. Wiener, BR-1178, Babcock & Wilcox, dated Oct. 13-14, 1980. |
Technical Paper, Solar Power Tower (SPT) Design Innovations to Improve Reliability and Performance—Reducing Technical Risk and Cost, by A. B. Zovoico, W. R. Gould, B. D. Kelly, and I. G. Pastoril, Proceedings Solar Forum 2001, dated Apr. 21-25, 2001. |
Solar Thermal Central Receiver Technology, An Alternative for Process Heat and Electric Power Generation, E105-3045, Babcock & Wilcox, dated Oct. 1981. |
Technical Paper, Summary of Final Report on Solar Advanced Steam/Water Receiver, by O. W. Durrant and M. Wiener, BR-1163, Babcock & Wilcox, dated Mar. 19-20, 1980. |
Technical Paper, Conceptual Design of a Solar Advanced Water/Steam Receiver, by O. W. Durrant, BR-1139, Babcock & Wilcox, Sep. 11-12, 1979. |
Number | Date | Country | |
---|---|---|---|
20100101564 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
61197169 | Oct 2008 | US |